In recent years, the selective inhibition of FKBP51 has emerged as a possible treatment for chronic pain, obesityinduced diabetes, or depression. All currently known advanced FKBP51-selective inhibitors, including the widely used SAFit2, contain a cyclohexyl residue as a key motif for enabling selectivity over the closest homologue and anti-target FKBP52. During a structure-based SAR exploration, we surprisingly discovered thiophenes as highly efficient cyclohexyl replacement moieties that retain the strong selectivity of SAFit-type inhibitors for FKBP51 over FKBP52. Cocrystal structures revealed that the thiophenecontaining moieties enable selectivity by stabilizing a flipped-out conformation of Phe 67 of FKBP51. Our best compound, 19b, potently binds to FKBP51 biochemically as well as in mammalian cells, desensitize TRPV1 in primary sensory neurons, and has an acceptable PK profile in mice, suggesting its use as a novel tool compound for studying FKBP51 in animal models of neuropathic pain.
A new practical, catalytic, and highly stereoselective
method for
directly accessing 1,1-α,α′-linked 2-deoxy trehalose
analogues via AuCl
3
-catalyzed dehydrative glycosylation
using hemiacetal glycosyl donors and acceptors is described. The method
relies on the chemoselective Brønsted acid-type activation of
tribenzylated 2-deoxy hemiacetals in the presence of other less reactive
hemiacetals.
In recent years the selective inhibition of FKBP51 has emerged as a possible treatment for chronic pain, obesity-induced diabetes, or depression. All currently known advanced FKBP51-selective inhibitors, including the widely used SAFit2, contain a cyclohexyl residue as a key motif for enabling selectivity over the closest homolog and anti-target FKBP52. During a structure-based SAR exploration we surprisingly discovered thiophenes as highly efficient cyclohexyl replacement moieties that retain the strong selectivity of SAFit-type inhibitors for FKBP51 over FKBP52. Cocrystal structures revealed that the thiophene-containing moieties enable selectivity by stabilizing a flipped-out conformation of Phe67 of FKBP51. Our best compound 19b potently binds to FKBP51 biochemically as well as in mammalian cells, desensitize TRPV1 in primary sensory neurons, and has an acceptable PK profile in mice, suggesting its use as novel tool compound for studying FKBP51 in animal models of neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.