Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. We also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction. The source code for the calculations in this work can be obtained from https://github.com/sebwouters/qc-dmet .
Numerical results for ground state and excited state properties (energies, double occupancies, and Matsubara-axis self energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods. arXiv:1505.02290v2 [cond-mat.str-el] 15
Projected Hartree-Fock (PHF) theory has a long history in quantum chemistry. PHF is here understood as the variational determination of an N-electron broken symmetry Slater determinant that minimizes the energy of a projected state with the correct quantum numbers. The method was actively pursued for several decades but seems to have been abandoned. We here derive and implement a "variation after projection" PHF theory using techniques different from those previously employed in quantum chemistry. Our PHF methodology has modest mean-field computational cost, yields relatively simple expressions, can be applied to both collinear and non-collinear spin cases, and can be used in conjunction with deliberate symmetry breaking and restoration of other molecular symmetries like complex conjugation and point group. We present several benchmark applications to dissociation curves and singlet-triplet energy splittings, showing that the resulting PHF wavefunctions are of high quality multireference character. We also provide numerical evidence that in the thermodynamic limit, the energy in PHF is not lower than that of broken-symmetry HF, a simple consequence of the lack of size consistency and extensivity of PHF.
We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A variety of modern many-body methods are employed, with exhaustive cross-checks and validation. Approaches for reaching the continuous space limit and the thermodynamic limit are investigated, proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state of the art in many-body computation, and for the development of new methods. The ground-state energy per atom in the linear chain is accurately determined versus bondlength, with a confidence bound given on all uncertainties.
We explore the concept of seniority number (defined as the number of unpaired electrons in a determinant) when applied to the problem of electron correlation in atomic and molecular systems. Although seniority is a good quantum number only for certain model Hamiltonians (such as the pairing Hamiltonian), we show that it provides a useful partitioning of the electronic full configuration interaction (FCI) wave function into rapidly convergent Hilbert subspaces whose weight diminishes as its seniority number increases. The primary focus of this study is the adequate description of static correlation effects. The examples considered are the ground states of the helium, beryllium, and neon atoms, the symmetric dissociation of the N(2) and CO(2) molecules, as well as the symmetric dissociation of an H(8) hydrogen chain. It is found that the symmetry constraints that are normally placed on the spatial orbitals greatly affect the convergence rate of the FCI expansion. The energy relevance of the seniority zero sector (determinants with all paired electrons) increases dramatically if orbitals of broken spatial symmetry (as those commonly used for Hubbard Hamiltonian studies) are allowed in the wave function construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.