Fish conservation in South America is a pressing issue. The biodiversity of fishes, just as with all other groups of plants and animals, is far from fully known. Continuing habitat loss may result in biodiversity losses before full species diversity is known. In this review, the main river basins of South America (Magdalena, Orinoco, Amazon and Paraná-La Plata system), together with key aquatic habitats (mangrove-fringed estuaries of the tropical humid, tropical semi-arid and subtropical regions) are analysed in terms of their characteristics and main concerns. Habitat loss was the main concern identified for all South American ecosystems. It may be caused by damming of rivers, deforestation, water pollution, mining, poor agricultural practice or inadequate management practice. Habitat loss has a direct consequence, which is a decrease in the availability of living resources, a serious social and economic issue, especially for South American nations which are all developing countries. The introduction of exotic species and overfishing were also identified as widespread across the continent and its main freshwater, coastal and marine ecosystems. Finally, suggestions are made to find ways to overcome these problems. The main suggestion is a change of paradigm and a new design for conservation actions, starting with integrated research and aiming at the co-ordinated and harmonized management of the main transboundary waters of the continent. The actions would be focused on habitat conservation and social rescue of the less well-off populations of indigenous and non-indigenous peoples. Energy and freshwater demands will also have to be rescaled in order to control habitat loss.
Although habitat fragmentation fosters extinctions, it also increases the probability of speciation by promoting and maintaining divergence among isolated populations. Here we test for the effects of two isolation factors that may reduce population dispersal within river networks as potential drivers of freshwater fish speciation: 1) the position of subdrainages along the longitudinal river gradient, and 2) the level of fragmentation within subdrainages caused by natural waterfalls. The occurrence of native freshwater fish species from 26 subdrainages of the Orinoco drainage basin (South America) was used to identify those species that presumably arose from in-situ cladogenetic speciation (i.e. neo-endemic species; two or more endemic species from the same genus) within each subdrainage. We related subdrainages fish diversity (i.e. total, endemic and neo-endemic species richness) and an index of speciation to our two isolation factors while controlling for subdrainages size and energy availability. The longitudinal position of subdrainages was unrelated to any of our diversity measures, a result potentially explained by the spatial grain we used and/or the contemporary connection between Orinoco and Amazon basins via the upstream Casiquiare region. However, we found higher neo-endemic species richness and higher speciation index values in highly fragmented subdrainages. These results suggest that habitat fragmentation generated by natural waterfalls drives cladogenetic speciation in fragmented subdrainages. More generally, our results emphasize the role of history and natural waterfalls as biogeographic barriers promoting freshwater biodiversity in river drainage basins.
Aim Documentation of the ongoing effect of rain forest refuges at the last glacial maximum (LGM) on patterns of tropical freshwater fish diversity.Location Tropical South and Central America, and West Africa. MethodsLGM rain forest regions and species richness by drainage were compiled from published data. GIS mapping was applied to compile drainage area and contemporary primary productivity. We used multiple regression analyses, applied separately for Tropical South America, Central America and West Africa, to assess differences in species richness between drainages that were connected and disconnected to rain forest refuge zones during the LGM. Spatial autocorrelation of the residuals was tested using Moran's I statistic. We added an intercontinental comparison to our analyses to see if a historical signal would persist even when a regional historical effect (climate at the LGM) had already been accounted for.Results Both area and history (contact with LGM rain forest refuge) explained the greatest proportions of variance in the geographical pattern of riverine species richness. In the three examined regions, we found highest richness in drainages that were connected to the rain forest refuges. No significant residual spatial autocorrelation was detected after considering area, primary productivity and LGM rain forest refuges. These results show that past climatic events still affect West African and Latin American regional and continental freshwater fish richness. At the continental scale, we found South American rivers more species-rich than expected on the basis of their area, productivity and connectedness to rain forest refuge. Conversely, Central American rivers were less species-diverse than expected by the grouped model. African rivers were intermediate. Therefore, a historical signal persists even when a regional historical effect (climate at the LGM) had already been accounted for.Main conclusions It has been hypothesized that past climatic events have limited impact on species richness because species have tracked environmental changes through range shifts. However, when considering organisms with physically constrained dispersal (such as freshwater fish), past events leave a perceptible imprint on present species diversity. Furthermore, we considered regions that have comparable contemporary climatic and environmental characteristics, explaining the absence of a productivity effect. From the LGM to the present day (a time scale of 18,000 years), extinction processes should have played a predominant role in shaping the current diversity pattern. By contrast, the continental effects could reflect historical contingencies explained by differences in speciation and extinction rates between continents at higher time scales (millions of years).
Based on literature review and malacological collections, 168 native freshwater bivalve and five invasive species have been recorded for 52 hydrographic regions in South America. The higher species richness has been detected in the South Atlantic, Uruguay, Paraguay, and Amazon Brazilian hydrographic regions. Presence or absence data were analysed by Principal Coordinate for Phylogeny-Weighted. The lineage Veneroida was more representative in hydrographic regions that are poorer in species and located West of South America. The Mycetopodidae and Hyriidae lineages were predominant in regions that are richest in species toward the East of the continent. The distribution of invasive species Limnoperna fortunei is not related to species richness in different hydrographic regions there. The species richness and its distribution patterns are closely associated with the geological history of the continent. The hydrographic regions present distinct phylogenetic and species composition regardless of the level of richness. Therefore, not only should the richness be considered to be a criterion for prioritizing areas for conservation, but also the phylogenetic diversity of communities engaged in services and functional aspects relevant to ecosystem maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.