Sudden cardiac death (SCD) is one of the main causes of death among people. A new methodology is presented for predicting the SCD based on ECG signals employing the wavelet packet transform (WPT), a signal processing technique, homogeneity index (HI), a nonlinear measurement for time series signals, and the Enhanced Probabilistic Neural Network classification algorithm. The effectiveness and usefulness of the proposed method is evaluated using a database of measured ECG data acquired from 20 SCD and 18 normal patients. The proposed methodology presents the following significant advantages: (1) compared with previous works, the proposed methodology achieves a higher accuracy using a single nonlinear feature, HI, thus requiring low computational resource for predicting an SCD onset in real-time, unlike other methodologies proposed in the literature where a large number of nonlinear features are used to predict an SCD event; (2) it is capable of predicting the risk of developing an SCD event up to 20 min prior to the onset with a high accuracy of 95.8%, superseding the prior 12 min prediction time reported recently, and (3) it uses the ECG signal directly without the need for transforming the signal to a heart rate variability signal, thus saving time in the processing.
Squirrel-cage induction motors (SCIMs) are key machines in many industrial applications. In this regard, the monitoring of their operating condition aiming at avoiding damage and reducing economical losses has become a demanding task for industry. In the literature, several techniques and methodologies to detect faults that affect the integrity and performance of SCIMs have been proposed. However, they have only been focused on analyzing either the start-up transient or the steady-state operation regimes, two common operating scenarios in real practice. In this work, a novel methodology for broken rotor bar (BRB) detection in SCIMs during both start-up and steady-state operation regimes is proposed. It consists of two main steps. In the first one, the analysis of three-axis vibration signals using fractal dimension (FD) theory is carried out. Since different FD-based algorithms can give different results, three algorithms named Katz’ FD, Higuchi’s FD, and box dimension, are tested. In the second step, a fuzzy logic system for each regime is presented for automatic diagnosis. To validate the proposal, a motor with different damage levels has been tested: one with a partially BRB, a second with one fully BRB, and the third with two BRBs. The obtained results demonstrate the proposed effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.