Two high-capacity thiol functionalized adsorbents are prepared, using sol-gel processing, and applied to the removal of lead(II) from aqueous streams. The first adsorbent (SN) is prepared by co-condensing oligomers of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPS); the second adsorbent (MI) is synthesized by a combined co-condensation/molecular imprinting route of TEOS and MPS. The resulting physicochemical properties of adsorbents are investigated by nitrogen sorption measurements, elemental analysis, Fourier transform infrared spectroscopy (FTIR), solid-state 13 C and 29 Si crosspolarization magic angle spinning nuclear magnetic resonance ( 13 C and 29 Si CPMAS NMR, respectively), and X-ray photoelectron spectroscopy (XPS). The adsorbents exhibit high ligand densities (1.19 mmol/g for SN and 1.03 mmol/g for MI), improved Brunauer-Emmett-Teller (BET) surface areas (S BET ) 129 m 2 /g for SN and 464 m 2 /g for MI), and highly developed mesoporosity (D p ) 15.1 nm for SN and 8.3 nm for MI). 29 Si CPMAS NMR measurements indicate that the silicon oxide solid structure of adsorbents is not modified by lead adsorption. XPS results indicate the presence of lead acetate species on the surface of adsorbents. Batch adsorption data are explained by a mechanism in which a hydrated species (Pb(OOCCH 3 )(H 2 O) 5 + ) forms a monodentate complex with thiol surface groups. Further characterization of the adsorbents shows rapid adsorption kinetics and equilibrium lead(II) adsorption capacities of 1.13 and 0.715 mmol/g for SN and MI. Lead adsorption dynamics in a packed column indicates high lead uptakes (155 and 80 mg Pb/g-adsorbent for SN and MI, respectively). Combined and simple sol-gel synthesis routes for preparation of adsorbents with high ligand densities and mesoporous structures are demonstrated here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.