Targeted T cell immunotherapies using engineered T lymphocytes expressing tumor-directed chimeric antigen receptors (CARs) are designed to benefit patients with cancer. Although incorporation of costimulatory endodomains within these CARs increases the proliferation of CAR-redirected T lymphocytes, it has proven difficult to draw definitive conclusions about the specific effects of costimulatory endodomains on the expansion, persistence, and antitumor effectiveness of CAR-redirected T cells in human subjects, owing to the lack of side-by-side comparisons with T cells bearing only a single signaling domain. We therefore designed a study that allowed us to directly measure the consequences of adding a costimulatory endodomain to CAR-redirected T cells. Patients with B cell lymphomas were simultaneously infused with 2 autologous T cell products expressing CARs with the same specificity for the CD19 antigen, present on most B cell malignancies. One CAR encoded both the costimulatory CD28 and the ζ-endodomains, while the other encoded only the ζ-endodomain. CAR + T cells containing the CD28 endodomain showed strikingly enhanced expansion and persistence compared with CAR + T cells lacking this endodomain. These results demonstrate the superiority of CARs with dual signal domains and confirm a method of comparing CAR-modified T cells within individual patients, thereby avoiding patient-to-patient variability and accelerating the development of optimal T cell immunotherapies.
Key Points
The frequency of CD8+CD45RA+CCR7+ cells, a subset closest to T-memory stem cells, correlates with CAR–T-cell expansion in lymphoma patients. IL-7 and IL-15 increase the frequency of CD8+CD45RA+CCR7+ cells during the ex vivo expansion of CAR+ T cells.
Key Points
Allogeneic CD19-CAR VSTs are well tolerated by patients with relapsed B-cell malignancies post-HSCT. At periods of CD19-CAR VST persistence, these cells demonstrate antitumor activity.
Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts. Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may correlate with acquisition of self renewal characteristics by cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.