Techniques of medical image processing and analysis play a crucial role in many clinical scenarios, including in diagnosis and treatment planning. However, immense quantities of data and high complexity of the algorithms often used are computationally demanding. As a result, there now exists a wide range of techniques of medical image processing and analysis that require the application of high-performance computing solutions in order to reduce the required runtime. The main purpose of this review is to provide a comprehensive reference source of techniques of medical image processing and analysis that have been accelerated by high-performance computing solutions. With this in mind, the articles available in the Scopus and Web of Science electronic repositories were searched. Subsequently, the most relevant articles found were individually analyzed in order to identify: (a) the metrics used to evaluate computing performance, (b) the high-performance computing solution used, (c) the parallel design adopted, and (d) the task of medical image processing and analysis involved. Hence, the techniques of medical image processing and analysis found were identified, reviewed, and discussed, particularly in terms of computational performance. Consequently, the techniques reviewed herein present the progress made so far in reducing the computational runtime involved, and the difficulties and challenges that remain to be overcome.
Your article is protected by copyright and all rights are held exclusively by Springer-Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.