In Shaker K+ channels, the S4-S5 linker couples the voltage sensor (VSD) and pore domain (PD). Another coupling mechanism is revealed using two W434F-containing channels: L361R:W434F and L366H:W434F. In L361R:W434F, W434F affects the L361R VSD seen as a shallower charge-voltage (Q-V) curve that crosses the conductance-voltage (G-V) curve. In L366H:W434F, L366H relieves the W434F effect converting a non-conductive channel in a conductive one. We report a chain of residues connecting the VSD (S4) to the selectivity filter (SF) in the PD of an adjacent subunit as the molecular basis for voltage sensor selectivity filter gate (VS-SF) coupling. Single alanine substitutions in this region (L409A, S411A, S412A, or F433A) are enough to disrupt the VS-SF coupling, shown by the absence of Q-V and G-V crossing in L361R:W434F mutant and by the lack of ionic conduction in the L366H:W434F mutant. This residue chain defines a new coupling between the VSD and the PD in voltage-gated channels.
The observation that membrane capacitance increases with temperature has led to the development of new methods of neuronal stimulation using light. The optocapacitive effect refers to a light-induced change in capacitance produced by the heating of the membrane through a photothermal effect. This change in capacitance manifests as a current, named optocapacitive current that depolarizes cells and therefore can be used to stimulate excitable tissues. Here, we discuss how optocapacitance arises from basic membrane properties, the characteristics of the optocapacitive current, its use for neuronal stimulation, and the challenges for its application in vivo.
Voltage-gated potassium channels are involved in many physiological processes such as nerve impulse transmission, the heartbeat, and muscle contraction. However, for many of them the molecular determinants of the gating mechanism remain elusive. Here, using a combination of theoretical and experimental approaches, we address this problem focusing on the cardiac hERG potassium channel. Network analysis of molecular dynamics trajectories reveals the presence of a kinematic chain of residues that couples the voltage sensor domain to the pore domain and involves the S4/S1 and S1/S5 subunit interfaces. Mutagenesis experiments confirm the role of these residues and interfaces in the activation and inactivation mechanisms. Our findings demonstrate the presence of an electromechanical transduction path crucial for the non-domain-swapped hERG channel gating that resembles the noncanonical path identified in domain-swapped K+ channels.
Voltage-gated ion channels play important roles in physiological processes, especially in excitable cells, in which they shape the action potential. In S4-based voltage sensors voltage-gated channels, a common feature is shared; the transmembrane segment 4 (S4) contains positively charged residues intercalated by hydrophobic residues. Although several advances have been made in understating how S4 moves through a hydrophobic plug upon voltage changes, the possible helix transition from a-to 3 10-helix in S4 during the activation process is still unresolved. Here, we have mutated several hydrophobic residues from I360 to F370 in the S4 segment into histidine, in i, i þ 3 and i, i þ 6 or i, i þ 4 and i, i þ 7 pairs, to favor 3 10-or a-helical conformations, respectively. We have taken advantage of the ability of His to coordinate Zn 2þ to promote metal ion bridges, and we have found that the histidine introduced at position 366 (L366H) can interact with the introduced histidine at position 370 (stabilizing that portion of the S4 segment in a-helical conformation). In the presence of 20 mM of Zn 2þ , the activation currents of L366H:F370H channels were slowed down by a factor of 3.5, and the voltage dependence is shifted by 10 mV toward depolarized potentials with no change on the deactivation time constant. Our data supports that by stabilizing a region of the S4 segment in a-helical conformation, a closed (resting or intermediate) state is stabilized rather than destabilizing the open (active) state. Taken together, our data indicates that S4 undergoes a-helical conformation to a short-lived different secondary structure transiently before reaching the active state in the activation process.
Biological ion channels precisely control the flow of ions across membranes in response to a range of physical and chemical stimuli. With their ability of transporting ions in a highly selective manner and of integrating regulatory cues, they are a source of inspiration for the construction of solid-state nanopores as sensors or switches for practical applications. Here, we summarize recent advancements in understanding the mechanisms of ion permeation and gating in channel proteins with a focus on the elementary steps of ion transport through the pore and on noncanonical modes of intramolecular communication between peripheral sensory domains and the central channel pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.