Mycobacterium avium subsp. hominissuis (MAH) is a common intracellular pathogen that infects immunocompromised individuals and patients with pre-existing chronic lung diseases, such as cystic fibrosis, who develop chronic and persistent pulmonary infections. The metabolic remodeling of MAH in response to host environmental stresses or within biofilms formed in bronchial airways plays an important role in development of the persistence phenotype contributing to the pathogen’s tolerance to antibiotic treatment. Recent studies suggest a direct relationship between bacterial metabolic state and antimicrobial susceptibility, and improved antibiotic efficacy has been associated with the enhanced metabolism in bacteria. In the current study, we tested approximately 200 exogenous carbon source-dependent metabolites and identified short-chain fatty acid (SCFA) substrates (propionic, butyric and caproic acids) that MAH can utilize in different physiological states. Selected SCFA enhanced MAH metabolic activity in planktonic and sessile states as well as in the static and established biofilms during nutrient-limited condition. The increased bacterial growth was observed in all conditions except in established biofilms. We also evaluated the influence of SCFA on MAH susceptibility to clinically used antibiotics in established biofilms and during infection of macrophages and found significant reduction in viable bacterial counts in vitro and in cultured macrophages, suggesting improved antibiotic effectiveness against persistent forms of MAH.
The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-κB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human β-defensin-2 (hβD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-κB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.