Heat transfer and pressure drop experiments were performed for in-line pin fin arrays to obtain basic data to complement available information for staggered arrays. The experimental data were utilized as input to analyses aimed at establishing performance relationships between in-line and staggered arrays. In the experiments, mass transfer measurements via the naphthalene sublimation technique were employed to determine the row-by-row distribution of the heat (mass) transfer coefficient. Fully developed conditions prevailed for the fourth row and beyond. In general, the fully developed heat transfer coefficients for the in-line array are lower than those for the staggered array, but the pressure drop is also lower. The deviations between the two arrays increase with increasing fin height. With regard to performance, the in-line array transfers more heat than the staggered array under conditions of equal pumping power and equal heat transfer area. On the other hand, at a fixed heat load and fixed mass flow rate, the staggered array requires less heat transfer surface than the in-line array.
Experiments were performed to determine entrance-region and fully developed heat transfer characteristics for turbulent airflow in an unsymmetrically heated equilateral triangular duct; friction factors were also measured. Two of the walls were heated while the third was not directly heated. The resulting thermal boundary conditions consisted of uniform heating per unit axial length and circumferentially uniform temperature on the heated walls. Special techniques were employed to minimize extraneous heat losses, and numerical finite-difference solutions played an important role in both the design of the apparatus and in the data reduction. The thermal entrance lengths required to attain thermally developed conditions were found to increase markedly with the Reynolds number and were generally greater than those for conventional pipe flows—a behavior which can be attributed to the unsymmetric heating. The fully developed Nusselt numbers were compared with circular tube correlations from the literature, from which it was shown that the hydraulic diameter is not fully sufficient to rationalize the circular and noncircular duct results. However, excellent Nusselt number predictions were obtained by employing the Petukhov-Popou correlation in conjunction with the measured friction factors for the triangular duct. This approach may have general applicability for predicting noncircular duct heat transfer. The friction factor results also affirmed the inadequacies of the hydraulic diameter but supported a general noncircular duct correlation available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.