ResumenLos estados electrónicos confinados en un punto cuántico de GaAs, de forma piramidal y cónica, se han investigado a través del enfoque cuasi analítico válido para ángulos pequeños y el método exacto de elementos finitos para incluir todos los ángulos y alturas. Se han reportado los resultados de la energía de confinamiento en función de la forma y el tamaño de ambas estructuras y finalmente se han comparado los valores aproximados con los exactos provenientes del método de elementos finitos. AbstractThe electronic states confined in a quantum dot, of GaAs, of pyramidal and conical shape have been investigated through the quasi-analytical approach, valid for small angles, and the finite element method to include all angles and heights. The results of the confinement energy have been reported according to the shape and size of both structures and finally the approximate values have been compared with the exact values obtained from the finite element method. Revista EIA, ISSN 1794-1237 / Año XV / Volumen 15 / Edición N.30 / Julio-Diciembre 2018 Publicación semestral de carácter técnico-científico / Universidad EIA, Envigado (Colombia)
Partiendo de una estructura compuesta de dos pozos cuánticos cónicos (CQDs) verticalmente acoplados de GaAs rodeados de AlxGa1-xAs en una concentración de 0,3, se estudia en primer lugar como las dimensiones del sistema causan un cambio en el confinamiento, para esto se varía la altura del pozo cuántico superior y se encuentra la óptima para trabajar, con esto definido, se evalúan los efectos de la presión hidrostática (entre 0 GPa y 3 GPa) y la temperatura (entre 0 K y 300 K) en la masa efectiva, el ancho de banda prohibida (Gap), la constante dieléctrica y su impacto sobre las autoenergías y autofunciones del sistema. Además, se evalúan los efectos al incluir la presencia de una impureza en la estructura ubicada en el pozo cuántico inferior. Haciendo uso del método de elementos finitos, se evidencian variaciones en las energías y funciones de onda del sistema, las cuales se deben a la alteración de la masa efectiva y de la nueva energía potencial. Analizando el comportamiento de la energía de enlace se nota un cambio en la constante dieléctrica cuando el sistema se encuentra sometido a una temperatura alrededor de 200 K debido a que sobre este valor el Gap pasa de ser directo a ser indirecto. Finalmente, la presencia de la impureza en el sistema genera un potencial adicional, en consecuencia, las energías en la estructura disminuyen bajo los efectos evaluados, haciendo cambios más contundentes en las funciones de onda y energías debido a este potencial.
Haciendo uso de la aproximación de masa efectiva y de cálculos numéricos con el método de elementos finitos, se reportan las propiedades ópticas y electrónicas de un electrón confinado en un punto cuántico de GaN, en forma de sector cónico esférico. Se reportan los estados electrónicos, el cuadrado del momento de dipolo y los coeficientes de absorción óptica y de cambios en el índice de refracción como funciones del radio y del ángulo apical de la estructura. Del estudio se puede concluir que: i) elecciones adecuadas del ángulo apical y del radio del punto cuántico pueden dar origen a magnificaciones en las propiedades ópticas y ii) corrimientos al rojo de las estructuras resonantes de las propiedades ópticas se asocian claramente con el aumento tanto del ángulo apical como del radio de la estructura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.