Prechlorination is the most common strategy for zebra and quagga mussel control in drinking water treatment plant intakes in the Great Lakes region. Although effective and inexpensive, chlorine can form regulated disinfection byproducts. Two potential alternatives to prechlorination were evaluated for mussel control: peracetic acid (PAA) and EarthTec QZ, a copper-based product. Pilot-scale experiments were conducted to test EarthTec QZ for veliger control and to evaluate the efficiency of PAA and EarthTec QZ for adult mussel control. EarthTec QZ doses of 30, 60, and 120 μg/L as copper ions demonstrated dose-dependent veliger control at 12 C. PAA doses of 5, 10, and 25 mg/L were effective for adult mussel control at the low water temperatures tested (4 C). Results from this study indicate that PAA and EarthTec QZ may be an alternative to prechlorination.
Drinking water treatment plants in the Great Lakes often protect their intake structures against dreissenid biofouling by prechlorinating when water temperatures exceed 12 °C. This temperature threshold is based on the reproduction characteristics of zebra mussels. However, in recent years, zebra mussels have largely given way to quagga mussels in the region. These mussels reportedly reproduce at temperatures as low as 5 °C. The objective of this study was to determine if the current 12 °C trigger point for prechlorination remains appropriate. A 3-year monitoring program using bioboxes were recorded mussel veliger concentrations and settlement potential in water drawn from the intakes of three drinking water treatment plants on Lake Ontario. Water temperature was a poor predictor of veliger presence and settlement. Reproduction and settlement were observed outside of the traditional temperature thresholds. Furthermore, no relationship was found between the number of veligers in the water column and those settling, suggesting that there are complex environmental factors that influence mussel activity. Nevertheless, it was observed that settlement occurred consistently between the months of July and November in the 3 years of the study. Therefore, a calendar-based approach to trigger prechlorination, as opposed to a temperature-based approach, is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.