Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM). The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D) gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways.
Apyrases are nucleoside triphosphate-diphosphohydrolases (EC 3.6.1.5) present in a variety of organisms. The apyrase activity found in the saliva of hematophagous insects is correlated with the prevention of ADPinduced platelet aggregation of the host during blood sucking. Purification of apyrase activity from the saliva of the triatomine bug Triatoma infestans was achieved by affinity chromatography on oligo(dT)-cellulose and gel filtration chromatography. The isolated fraction includes five N-glycosylated polypeptides of 88, 82, 79, 68 and 67 kDa apparent molecular masses. The isolated apyrase mixture completely inhibited aggregation of human blood platelets. Labeling with the ATP substrate analogue 5-p-fluorosulfonylbenzoyladenosine showed that the five species have ATP-binding characteristic of functional apyrases. Furthermore, tandem mass spectroscopy peptide sequencing showed that the five species share sequence similarities with the apyrase from Aedes aegypti and with 5-nucleotidases from other species. The complete cDNA of the 79-kDa enzyme was cloned, and its sequence confirmed that it encodes for an apyrase belonging to the 5-nucleotidase family. The gene multiplication leading to the unusual salivary apyrase diversity in T. infestans could represent an important mechanism amplifying the enzyme expression during the insect evolution to hematophagy, in addition to an escape from the host immune response, thus enhancing acquisition of a meal by this triatomine vector of Chagas' disease.Hematophagy in triatomines (Hemiptera: Reduviidae) is associated with the presence of biochemical compounds in the salivary glands that are essential for obtaining blood meals. Indeed, most blood-feeding arthropods have salivary components with vasodilatory, anti-clotting, and anti-platelet aggregation activities that are capable of inhibiting hemostatic reactions of the host (1-4).Host platelet aggregation is considered to be an important hemostatic barrier against insect feeding, because it can stop the bleeding of small blood vessels regardless of other clotting factors (5, 6). Rhodnius prolixus, a triatomine, neutralizes and overrides platelet aggregation induced by collagen, thrombin, thromboxane A 2 , and ADP (7-10). Similarly, collagen-and thrombin-induced platelet aggregation is inhibited by, respectively, pallidipin and triabin, both of which are present in the saliva of Triatoma pallidipennis (11,12). However, the importance of ADP as a common mediator of platelet aggregation pathways is evidenced by the presence on the vascular endothelium surface of the CD39 apyrase, which limits platelet aggregation by hydrolyzing ADP, thus preventing thrombus formation (13). Thus, studying insect apyrases may lead to alternative strategies against the diseases they transmit, as well as new pharmaceutical tools for platelet aggregation-associated disorders. Apyrase removes inorganic phosphate from ATP and ADP, and thus prevents platelet aggregation (6,8,14). Apyrase activity has been characterized in the saliva of Anopheles st...
Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis was used to identify some extracellular proteins secreted by T. harzianum ALL42 after growth on cell wall of M. phaseolina, Fusarium sp., and R. solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T. harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase, and proteases were identified in the gel and also detected in the supernatant of culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.