Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.
The aggregation of (pro)chiral/achiral molecules into crystalline structures at interfaces forms conglomerates, racemates, and solid solutions, comparable to known bulk phases. Scanning tunneling microscopy and Monte Carlo simulations were employed to uncover a distinct racemic phase, expressing 1D disordered chiral sorting through random tiling in surface-confined supramolecularly assembled achiral 4,4''-diethynyl-1,1':4',1''-terphenyl molecules. The configurational entropy of the 1D disordered racemic tiling phase was verified by analytical modeling, and found to lie between that of a perfectly ordered 2D racemate and a racemic solid solution.
Graphene nanoribbons (GNRs) are considered as potential candidates for next-generation electronic materials, and chemical functionalization can be an efficient method to modulate their electronic properties. This work presents a solution...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.