Energy refurbishment of the housing stock is needed in order to reduce energy consumption and meet global climate goals. This is even more necessary for social housing built in Spain in the middle of the last century since its obsolete energy conditions lead to situations of indoor thermal discomfort and energy poverty. The present study carries out a life cycle assessment of the energy and economic performance of roofs after being retrofitted to become cool roofs for the promotion of social housing in Seville (Spain). Dynamic simulations are made in which the time dependent aging effect on the energy performance of the refurbished cool roofs is included for the whole lifespan. The influence of the time dependent aging effect on the results of the life cycle economic analysis is also assessed. A variety of scenarios are considered in order to account for the aging effect in the energy performance of the retrofitted cool roofs and its incidence while considering different energy prices and monetary discount rates on the life cycle assessment. This is made through a dynamic life cycle assessment in order to capture the impact of the aging dynamic behavior correctly. Results point out significant savings in the operational energy. However, important differences are found in the economic savings when the life cycle analysis is carried out since the source of energy and the efficiency of the equipment used for conditioning strongly impact the economic results.
Social housing built in the middle of the last century in Spain suffers from poor thermal insulation conditions that cause situations of discomfort and energy poverty. For this reason, the energetic refurbishment of the envelope of this social building stock is necessary to overcome these situations and reduce energy consumption aimed at achieving interior comfort for its occupants. The goal of this work is to optimize a constructive solution that combines cool roof techniques with the use of thermal insulation applied to the refurbishment of the roof of buildings belonging to a quarter of social housing in Seville, Spain. The optimization analysis is based on the computation of the energy performance of the roofs when the energy retrofitting measure is applied, considering a variety of combinations of solar reflective coatings and insulation layer thickness, performing a dynamic analysis that accounts for the aging effect of the cool coats on the monthly roof energy performance and on the economic balance for the whole life cycle (LC) span. Economic and energy optimization analysis show that a suitable combination of cool roof emissivity and insulation layer thickness produces significant savings in the operational energy and in the economic profitability of the proposed retrofitting measure: the optimum combination obtained provides for the entire life cycle timespan an energy savings of 5.71 GJ/m2 and a cost savings equivalent to the 63.1% of the total costs when compared to the non-refurbished roof. The application of a time-dependent pattern for the changes on time produced by the aging effect on the cool roof emissivity, and its effects on the optimization of the combination of cool roof and insulation layer, can be considered novel in literature, both from an energy and an economic point of view.
In recent years, there has been growing concern regarding energy efficiency in the building sector with energy requirements increasing worldwide and now responsible for about 40% of final energy consumption in Europe. Previous research has shown that ventilated façades help to reduce energy use when cooling buildings in hot and temperate climates. Of the different ventilated façade configurations reported in the literature, the configuration of ventilated façade with window rarely has been studied, and its 3D thermodynamic behavior is deserving of further analysis and modeling. This paper examines the thermal behavior of an opaque ventilated façade with a window, in experimentally and numerical terms and its impact in energy savings to get indoor comfort. Field measurements were conducted during the winter, spring and summer seasons of 2021 using outdoor full scale test cells located in Seville (southern Spain). The modeling of the ventilated façade was carried out using a three-dimensional approach taking into account the 3D behavior of the air flow in the air cavity due to the presence of the window. The validation and comparison process using experimental data showed that the proposed model provided good results from quantitative and qualitative point of view. The reduction of the heat flux was assessed by comparing the energy performance of a ventilated façade with that of an unventilated façade. Both experimental and numerical results showed that the ventilated façade provided a reduction in annual total energy consumption when compared to the unventilated façade, being compensated the winter energy penalization by the summer energy savings. This reduction is about 21% for the whole typical climatic year showing the ability of the opaque ventilated façade studied to reduce energy consumption to insure indoor comfort, making its suitable for use in retrofitting the energy-obsolete building stock built in Spain in the middle decades of the 20 century.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.