Soil erosion is one of the most significant factors in the degradation of agricultural land, because it causes soil particles to be displaced, transported and deposited in different places through the actions of water or wind [...]
We used wind-transported particle collectors of our own inhouse design to monitor the sediment flow in a citrus orchard in Southeast Spain. These collectors, which can differentiate sediment collected by direction of origin, are very efficient, economical, and easy to manufacture from thermoplastic filaments with an industrial 3D printer. Data were acquired from six vaned masts, each with four collectors at different heights, and on one of those masts, the collectors included load cells with one end attached to the collector floor and the other end to each oriented compartment in the collectors. The load cell values were interpreted in real time by a microcontroller and amplifier. The remote monitoring system was developed with an internet of things (IoT) platform. The results showed clear predominance of winds from the Northeast after dark, and from the South during the middle of the day. After analyzing the sediment transport rates and their balance, we found that those being deposited in the citrus orchard from the Northeast had a higher carbonate content (mainly calcite), which had an aggregating and therefore stabilizing effect against wind erosion of the soil. Furthermore, significant amounts of highly adhesive phyllosilicates were captured by the upper traps, which also contributed to reducing soil wind erodibility because of their adhesiveness. However, the sediments from the South with much more total transported mass were not deposited in the study zone, but leeward of it and contained a large amount of quartz, promoting abrasion and increasing wind erodibility of the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.