In this note we present our most recent advances in the automatic design of artificial neural networks (ANNs) and associative memories (AMs) for pattern classification and pattern recall. Particle Swarm Optimization (PSO), Differential Evolution (DE), and Artificial Bee Colony (ABC) algorithms are used for ANNs; Genetic Programming is adopted for AMs. The derived ANNs and AMs are tested with several examples of well-known databases. As we will show, results are very promising.
In this work a new method to retrieve images with similar lighting conditions is presented. It is based on automatic clustering and automatic indexing. Our proposal belongs to Content Based Image Retrieval (CBIR) category. The goal is to retrieve from a database, images (by their content) with similar lighting conditions. When we look at images taken from outdoor scenes, much of the information perceived depends on the lighting conditions. The proposal combines fixed and random extracted points for feature extraction. The describing features are the mean, the standard deviation and the homogeneity (from the co-occurrence matrix) of a sub-image extracted from the three color channels: (H, S, I). A K-MEANS algorithm and a 1-NN classifier are used to build an indexed database of 300 images in order to retrieve images with similar lighting conditions applied on sky regions such as: sunny, partially cloudy and completely cloudy. One of the advantages of the proposal is that we do not need to manually label the images for their retrieval. The performance of our framework is demonstrated through several experimental results, including the improved rates for images retrieval with similar lighting conditions. A comparison with another similar work is also presented.
Abstract. Feature extraction is a key issue in Content Based Image Retrieval (CBIR). In the past, a number of describing features have been proposed in literature for this goal. In this work a feature extraction and classification methodology for the retrieval of natural images is described. The proposal combines fixed and random extracted points for feature extraction. The describing features are the mean, the standard deviation and the homogeneity (form the co-occurrence) of a sub-image extracted from the three channels: H, S and I. A K-MEANS algorithm and a 1-NN classifier are used to build an indexed database of 300 images. One of the advantages of the proposal is that we do not need to manually label the images for their retrieval. After performing our experimental results, we have observed that in average image retrieval using images not belonging to the training set is of 80.71% of accuracy. A comparison with two similar works is also presented. We show that our proposal performs better in both cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.