This work studies how deeply the reagents choice influences micromixing characterisation by the Villermaux-Dushman method, when applying it to a 1 litre stainless steel standard vessel with two baffles, stirred by an inclined blade turbine. For the first time, borate and phosphate buffer are compared on their use in the method. It is observed that triiodide production is higher when borate buffer is used. Moreover, perchloric acid leads to higher triiodide production than sulphuric acid, when injecting the same concentration of both acids. Finally, the influence of the ionic strength is also studied, since there has been a great deal of controversy about it over the last years. The results show that the ionic strength affects triiodide production, although relatively slightly. Advice concerning the choice of the reagents is given in conclusion.
The well-known Villermaux−Dushman system is nowadays widely used for examining the micromixing efficiency either in batch or continuous intensified reactors. However, a bibliographic review shows that kinetic data are too scattered for a reliable determination of the micromixing times. The Dushman reaction kinetics is then reexamined with the use of sulfuric and perchloric acids. The results confirm the fifth-order rate law. More precisely, the I − , H + , and IO 3 − dependence orders on the rate law are, respectively, 2, 2, and 1, under any condition. To be more consistent with the reactant concentrations used in the Villermaux− Dushman test, we extend their studied range, namely, 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.