Background Breast implant capsule development and behavior are mainly determined by implant surface combined with other external factors such as intraoperative contamination, radiation or concomitant pharmacologic treatment. Thus, there are several diseases: capsular contracture, breast implant illness or Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL), that have been correlated with the specific type of implant placed. This is the first study to compare all major implant and texture models available in the market on the development and behave of the capsules. Through a histopathological analysis, we compared the behavior of different implant surfaces and how different cellular and histological properties give rise to different susceptibilities to develop capsular contracture among these devices. Methods A total of 48 Wistar female rats were used to implant 6 different types of breast implants. Mentor®, McGhan®, Polytech polyurethane®, Xtralane®, Motiva® and Natrelle Smooth® implants were employed; 20 rats received Motiva®, Xtralane® and Polytech polyurethane®, and 28 rats received Mentor®, McGhan® and Natrelle Smooth® implants. The capsules were removed five weeks after the implants placement. Further histological analysis compared capsule composition, collagen density and cellularity. Results High texturization implants showed the highest levels of collagen and cellularity along the capsule. However, polyurethane implants capsules behaved differently regarding capsule composition, with the thickest capsules but fewer collagen and myofibroblasts than expected, despite being generally considered as a macrotexturized implant. Nanotextured implants and microtextured implants histological findings showed similar characteristics and less susceptibility to develop a capsular contracture compared with smooth implants. Conclusions This study shows the relevance of the breast implant surface on the definitive capsules’ development, since this is one of the most differentiated factors that determine the incidence of capsular contracture and probably other diseases like BIA-ALCL. A correlation of these findings with clinical cases will help to unify implant classification criteria based on their shell and their estimated incidence of capsule-associated pathologies. Up to this point, the establishment of additional groups is recommended as nanotexturized implants seem to behave differently to pure smooth surfaces and polyurethane implants present diverse features from macro- or microtextured implants. No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Capsular contracture is the most frequently associated complication following breast implant placement. Biofilm formation on the surface of such implants could significantly influence the pathogenesis of this complication. The objective of this study was to design an experimental model of breast implant infection that allowed us to compare the in vivo S. epidermidis ability to form and perpetuate biofilms on commonly used types of breast implants (i.e., macrotexturized, microtexturized, and smooth). A biofilm forming S. epidermidis strain (ATCC 35984) was used for all experiments. Three different implant surface types were tested: McGhan BIOCELL® (i.e., macrotexturized); Mentor Siltex® (i.e., microtexturized); and Allergan Natrelle Smooth® (i.e., smooth). Two different infection scenarios were simulated. The ability to form biofilm on capsules and implants over time was evaluated by quantitative post-sonication culture of implants and capsules biopsies. This experimental model allows the generation of a subclinical staphylococcal infection associated with a breast implant placed in the subcutaneous tissue of Wistar rats. The probability of generating an infection was different according to the type of implant studied and to the time from implantation to implant removal. Infection was achieved in 88.9% of macrotextured implants (i.e., McGhan), 37.0% of microtexturized implants (i.e., Mentor), and 18.5% of smooth implants (i.e., Allergan Smooth) in the short-term (p < 0.001). Infection was achieved in 47.2% of macrotextured implants, 2.8% of microtexturized implants, and 2.8% of smooth implants (i.e., Allergan Smooth) in the long-term (p < 0.001). There was a clear positive correlation between biofilm formation on any type of implant and capsule colonization/infection. Uniformly, the capsules formed around the macro- or microtexturized implants were consistently macroscopically thicker than those formed around the smooth implants regardless of the time at which they were removed (i.e., 1–2 weeks or 3–5 weeks). We have shown that there is a difference in the ability of S epidermidis to develop in vivo biofilms on macrotextured, microtextured, and smooth implants. Smooth implants clearly thwart bacterial adherence and, consequently, biofilm formation and persistence are hindered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.