To establish effective water quality monitoring strategies in estuaries, it is imperative to identify and understand the main drivers for the variation of water quality parameters. The tidal effect is an important factor of the daily and fortnightly variability in several estuaries. However, the extent of that influence on the different physicochemical and biological parameters is still overlooked in some estuarine systems, such as the Sado Estuary, a mesotidal estuary located on the west coast of Portugal. The main objective of this study was to determine how the water quality parameters of the Sado Estuary varied with the fortnightly and the semidiurnal tidal variation. To achieve this goal, sampling campaigns were conducted in May/18, Nov/18 and Jun/19, under neap and spring tidal conditions, with data collection over the tidal cycle. Results were observed to be significantly influenced by the tidal variation, in a large area of the estuary. Flood seemed to mitigate possible effects of nutrient enrichment in the water column. Additionally, significant differences were also observed when considering the different sampling stations. Temperature, Suspended Particulate Matter (SPM) and nutrients showed the highest values at low water. Lastly, the implications of the tidal variability in the evaluation of the water quality according to Water Framework Directive were also discussed, highlighting the importance of studying short-time scale variations and the worst-case scenario to ensure water quality is maintained. These findings are relevant for the implementation of regional management plans and to promote sustainable development.
Phytoplankton bloom phenology studies are fundamental for the understanding of marine ecosystems. Mismatches between fish spawning and plankton peak biomass will become more frequent with climate change, highlighting the need for thorough phenology studies in coastal areas. This study was the first to assess phytoplankton bloom phenology in the Western Iberian Coast (WIC), a complex coastal region in SW Europe, using a multisensor long-term ocean color remote sensing dataset with daily resolution. Using surface chlorophyll a (chl-a) and biogeophysical datasets, five phenoregions (i.e., areas with coherent phenology patterns) were defined. Oceanic phytoplankton communities were seen to form long, low-biomass spring blooms, mainly influenced by atmospheric phenomena and water column conditions. Blooms in northern waters are more akin to the classical spring bloom, while blooms in southern waters typically initiate in late autumn and terminate in late spring. Coastal phytoplankton are characterized by short, high-biomass, highly heterogeneous blooms, as nutrients, sea surface height, and horizontal water transport are essential in shaping phenology. Wind-driven upwelling and riverine input were major factors influencing bloom phenology in the coastal areas. This work is expected to contribute to the management of the WIC and other upwelling systems, particularly under the threat of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.