We present OpenAWSEM and Open3SPN2, new cross-compatible implementations of coarse-grained models for protein (AWSEM) and DNA (3SPN2) molecular dynamics simulations within the OpenMM framework. These new implementations retain the chemical accuracy and intrinsic efficiency of the original models while adding GPU acceleration and the ease of forcefield modification provided by OpenMM’s Custom Forces software framework. By utilizing GPUs, we achieve around a 30-fold speedup in protein and protein-DNA simulations over the existing LAMMPS-based implementations running on a single CPU core. We showcase the benefits of OpenMM’s Custom Forces framework by devising and implementing two new potentials that allow us to address important aspects of protein folding and structure prediction and by testing the ability of the combined OpenAWSEM and Open3SPN2 to model protein-DNA binding. The first potential is used to describe the changes in effective interactions that occur as a protein becomes partially buried in a membrane. We also introduced an interaction to describe proteins with multiple disulfide bonds. Using simple pairwise disulfide bonding terms results in unphysical clustering of cysteine residues, posing a problem when simulating the folding of proteins with many cysteines. We now can computationally reproduce Anfinsen’s early Nobel prize winning experiments by using OpenMM’s Custom Forces framework to introduce a multi-body disulfide bonding term that prevents unphysical clustering. Our protein-DNA simulations show that the binding landscape is funneled towards structures that are quite similar to those found using experiments. In summary, this paper provides a simulation tool for the molecular biophysics community that is both easy to use and sufficiently efficient to simulate large proteins and large protein-DNA systems that are central to many cellular processes. These codes should facilitate the interplay between molecular simulations and cellular studies, which have been hampered by the large mismatch between the time and length scales accessible to molecular simulations and those relevant to cell biology.
Actomyosin networks give cells the ability to move and divide. These networks contract and expand while being driven by active energy-consuming processes such as motor protein walking and actin polymerization. Actin dynamics is also regulated by actin-binding proteins, such as the actin-related protein 2/3 (Arp2/3) complex. This complex generates branched filaments, thereby changing the overall organization of the network. In this work, the spatiotemporal patterns of dynamical actin assembly accompanying the branching-induced reorganization caused by Arp2/3 were studied using a computational model (mechanochemical dynamics of active networks [MEDYAN]); this model simulates actomyosin network dynamics as a result of chemical reactions whose rates are modulated by rapid mechanical equilibration. We show that branched actomyosin networks relax significantly more slowly than do unbranched networks. Also, branched networks undergo rare convulsive movements, “avalanches,” that release strain in the network. These avalanches are associated with the more heterogeneous distribution of mechanically linked filaments displayed by branched networks. These far-from-equilibrium events arising from the marginal stability of growing actomyosin networks provide a possible mechanism of the “cytoquakes” recently seen in experiments.
Many eukaryotic transcription factors function after forming oligomers. The choice of protein partners is a nonrandom event that has distinct functional consequences for gene regulation. In the present work we examine three dimers of transcription factors in the NFκB family: p50p50, p50p65, and p65p65. The NFκB dimers bind to a myriad of genomic sites and switch the targeted genes on or off with precision. The p65p50 heterodimer of NFκB is the strongest DNA binder, and its unbinding is controlled kinetically by molecular stripping from the DNA induced by IκB. In contrast, the homodimeric forms of NFκB, p50p50 and p65p65, bind DNA with significantly less affinity, which places the DNA residence of the homodimers under thermodynamic rather than kinetic control. It seems paradoxical that the heterodimer should bind more strongly than either of the symmetric homodimers since DNA is a nearly symmetric target. Using a variety of energy landscape analysis tools, here we uncover the features in the molecular architecture of NFκB dimers that are responsible for these drastically different binding free energies. We show that frustration in the heterodimer interface gives the heterodimer greater conformational plasticity, allowing the heterodimer to better accommodate the DNA. We also show how the elastic energy and mechanical strain in NFκB dimers can be found by extracting the principal components of the fluctuations in Cartesian coordinates as well as fluctuations in the space of physical contacts, which are sampled via simulations with a predictive energy landscape Hamiltonian. These energetic contributions determine the specific detailed mechanisms of binding and stripping for both homo- and heterodimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.