Nitrate reductase from Desulfovibrio desulfuricans ATCC 27774 (DdNapA) is a monomeric protein of 80 kDa harboring a bis(molybdopterin guanine dinucleotide) active site and a [4Fe-4S] cluster. Previous electron paramagnetic resonance (EPR) studies in both catalytic and inhibiting conditions showed that the molybdenum center has high coordination flexibility when reacted with reducing agents, substrates or inhibitors. As-prepared DdNapA samples, as well as those reacted with substrates and inhibitors, were crystallized and the corresponding structures were solved at resolutions ranging from 1.99 to 2.45 Å . The good quality of the diffraction data allowed us to perform a detailed structural study of the active site and, on that basis, the sixth molybdenum ligand, originally proposed to be an OH/OH 2 ligand, was assigned as a sulfur atom after refinement and analysis of the B factors of all the structures. This unexpected result was confirmed by a single-wavelength anomalous diffraction experiment below the iron edge (k = 1.77 Å ) of the as-purified enzyme. Furthermore, for six of the seven datasets, the S-S distance between the sulfur ligand and the Sc atom of the molybdenum ligand Cys A140 was substantially shorter than the van der Waals contact distance and varies between 2.2 and 2.85 Å , indicating a partial disulfide bond. Preliminary EPR studies under catalytic conditions showed an EPR signal designated as a turnover signal (g values 1.999, 1.990, 1.982) showing hyperfine structure originating from a nucleus of unknown nature. Spectropotentiometric studies show that reduced methyl viologen, the electron donor used in the catalytic reaction, does not interact directly with the redox cofactors. The turnover signal can be obtained only in the presence of the reaction substrates. With use of the optimized conditions determined by spectropotentiometric titration, the turnover signal was developed with 15 N-labeled nitrate and in D 2 O-exchanged DdNapA samples. These studies indicate that this signal is not associated with a Mo(V)-nitrate adduct and that the hyperfine structure originates from two equivalent solvent-exchangeable protons. The new coordination sphere of molybdenum proposed on the basis of our studies led us to revise the currently accepted reaction mechanism for periplasmic nitrate reductases. Proposals for a new mechanism are discussed taking into account a molybdenum and ligandbased redox chemistry, rather than the currently accepted redox chemistry based solely on the molybdenum atom.
The complexes (η5-C5R5)MoO2Cl (R = H, CH3 (Me), CH2Ph (Bz)) are readily prepared from the parent carbonyls (η5-C5R5)Mo(CO)3Cl upon reaction with t-BuOOH (TBHP) in n-decane. The compounds are characterized by vibrational spectroscopy, 1H, 13C, and 95Mo NMR spectroscopy, and elementary analysis and are compared to their (η5-C5R5)ReO3 homologues. The Mo−C5R5 force constants have been determined. (η5-C5Bz5)MoO2Cl can be stored and handled at room temperature without decomposition, in contrast to the more temperature sensitive Cp (R = H) and Cp* (R = Me) analogues. The (η5-C5R5)MoO2Cl complexes catalyze the epoxidation of cyclooctene, styrene, and 1-octene with TBHP as oxidizing agent. The highest activity is found for (η5-C5Bz5)MoO2Cl: TOF 21000 mol/(mol × h) for cyclooctene in CH2Cl2 at 55 °C with a ratio catalyst:substrate:TBHP = 0.0001:1:2.5. This activity even surpasses that of the well-known MeReO3/H2O2 system. The stable parent carbonyls (η5-C5R5)Mo(CO)3Cl can be used as catalyst precursors since they are transformed into (η5-C5R5)MoO2Cl under the operating catalytic conditions.
Complexes of the general formula [MoO2X2L2] (X=Cl, Br, Me; L2=bipy, bpym) have been prepared and fully characterized, including X‐ray crystallographic investigations of all six compounds. Additionally, the highly soluble complex [MoO2Cl2(4,4′‐bis(hexyl)‐2,2′‐bipyridine)] has been synthesized. The reaction of the complexes with tert‐butyl hydroperoxide (TBHP) is an equilibrium reaction, and leads to MoVI η1‐alkylperoxo complexes that selectively catalyze the epoxidation of olefins. Neither the Mo−X bonds nor the Mo−N bonds are cleaved during this reaction. These experimental results are supported by theoretical calculations, which show that the attack of TBHP at the Mo center through the X‐O‐N face is energetically favored and the TBHP hydrogen atom is transferred to a terminal oxygen of the Mo=O moiety. After the attack of the olefin on the Mo‐bound peroxo oxygen atom, epoxide and tert‐butyl alcohol are formed. The latter compound acts as a competitive inhibitor for the TBHP attack, and leads to a significant reduction in the catalytic activity with increasing reaction time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.