With no approved pharmacological treatment, non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic NAD+ levels driving reductions in hepatic mitochondrial content, function and ATP levels, in conjunction with robust increases in hepatic weight, lipid content and peroxidation in C57BL/6J mice. In an effort to assess the effect of NAD+ repletion on the development of steatosis in mice, nicotinamide riboside (NR), a precursor for NAD+ biosynthesis, was given to mice concomitant, as preventive strategy (NR-Prev), and as a therapeutic intervention (NR-Ther), to a HFHS diet. We demonstrate that NR prevents and reverts NAFLD by inducing a SIRT1- and SIRT3-dependent mitochondrial unfolded protein response (UPRmt), triggering an adaptive mitohormetic pathway to increase hepatic β-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 KO mice (Sirt1hep−/−), while Apolipoprotein E-deficient (Apoe−/−) mice challenged with a high-fat high-cholesterol diet (HFC), affirmed the use of NR in other independent models of NAFLD. Conclusion: Our data warrant the future evaluation of NAD+ boosting strategies to manage the development or progression of NAFLD.
Cellular organelles are not static but show dynamism—a property that is likely relevant for their function. In addition, they interact with other organelles in a highly dynamic manner. In this review, we analyze the proteins involved in the interaction between mitochondria and other cellular organelles, especially the endoplasmic reticulum, lipid droplets, and lysosomes. Recent results indicate that, on one hand, metabolic alterations perturb the interaction between mitochondria and other organelles, and, on the other hand, that deficiency in proteins involved in the tethering between mitochondria and the ER or in specific functions of the interaction leads to metabolic alterations in a variety of tissues. The interaction between organelles is an emerging field that will permit to identify key proteins, to delineate novel modulation pathways, and to elucidate their implications in human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.