International audienceThere is a growing interest around the utilisation of cloud computing in education. As organisations involved in the area typically face severe budget restrictions, there is a need for cost optimisation mechanisms that explore unique features of digital learning environments. In this work, we introduce a method based on Maximum Likelihood Estimation that considers heterogeneity of IT infrastructure in order to devise resource allocation plans that maximise platform utilisation for educational environments. We performed experiments using modelled datasets from real digital teaching solutions and obtained cost reductions of up to 30%, compared with conservative resource allocation strategies
Artificial Intelligence (AI) has been used extensively in automatic decision making in a broad variety of scenarios, ranging from credit ratings for loans to recommendations of movies. Traditional design guidelines for AI models focus essentially on accuracy maximization, but recent work has shown that economically irrational and socially unacceptable scenarios of discrimination and unfairness are likely to arise unless these issues are explicitly addressed. This undesirable behavior has several possible sources, such as biased datasets used for training that may not be detected in black-box models. After pointing out connections between such bias of AI and the problem of induction, we focus on Popper's contributions after Hume's, which offer a logical theory of preferences. An AI model can be preferred over others on purely rational grounds after one or more attempts at refutation based on accuracy and fairness. Inspired by such epistemological principles, this paper proposes a structured approach to mitigate discrimination and unfairness caused by bias in AI systems. In the proposed computational framework, models are selected and enhanced after attempts at refutation. To illustrate our discussion, we focus on hiring decision scenarios where an AI system filters in which job applicants should go to the interview phase.
h i g h l i g h t s• Mechanisms for resource auto-scaling in clouds considering users' patience.• Methods for determining the step size of scaling operations under bound and unbounded maximum capacity. • Users patience model inspired in prospect theory.
a b s t r a c tAn important feature of most cloud computing solutions is auto-scaling, an operation that enables dynamic changes on resource capacity. Auto-scaling algorithms generally take into account aspects such as system load and response time to determine when and by how much a resource pool capacity should be extended or shrunk. In this article, we propose a scheduling algorithm and auto-scaling triggering strategies that explore user patience, a metric that estimates the perception end-users have from the Quality of Service (QoS) delivered by a service provider based on the ratio between expected and actual response times for each request. The proposed strategies help reduce costs with resource allocation while maintaining perceived QoS at adequate levels. Results show reductions on resource-hour consumption by up to approximately 9% compared to traditional approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.