Synchrotron emission is commonly found in relativistic jets from active galactic nuclei (AGNs) and microquasars, but so far its presence in jets from young stellar objects (YSOs) has not been proved. Here, we present evidence of polarized synchrotron emission arising from the jet of a YSO. The apparent magnetic field, with strength of ~0.2 milligauss, is parallel to the jet axis, and the polarization degree increases toward the jet edges, as expected for a confining helical magnetic field configuration. These characteristics are similar to those found in AGN jets, hinting at a common origin of all astrophysical jets.
Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free-free (thermal) radio continuum emission in the centimeter domain is associated with these jets. The emission is relatively weak and compact, and sensitive radio interferometers of high angular resolution are required to detect and study it. One of the key problems in the study of outflows is to determine how they are accelerated and collimated. Observations in the cm range are most useful to trace the base of the ionized jets, close to the young central object and the inner parts of its accretion disk, where optical or near-IR imaging is made difficult by the high extinction present. Radio recombination lines in jets (in combination with proper motions) should provide their 3D kinematics at very small scale (near their origin). Future instruments such as the Square Kilometre Array (SKA) and the Next Generation Very Large Array (ngVLA) will be crucial to perform this kind of sensitive observations. Thermal jets are associated with both high and low mass protostars and possibly even with objects in the substellar domain. The ionizing mechanism of these radio jets appears to be related to shocks in the associated outflows, as suggested by the observed correlation between the centimeter luminosity and the outflow momentum rate. From this correlation and that of the centimeter luminosity with the bolometric luminosity of the system it will be possible to discriminate between unresolved HII regions and jets, and to infer additional physical properties of the embedded objects. Some jets associated with young stellar objects (YSOs) show indications of nonthermal emission (negative spectral indices) in part of their lobes. Linearly polarized synchrotron emission has been found in the jet of HH 80-81, allowing one to measure the direction and intensity of the jet magnetic field, a key ingredient to determine the collimation and ejection mechanisms. As only a fraction of the emission is polarized, very sensitive observations such as those that will be feasible with the interferometers previously mentioned are required to perform studies in a large sample of sources. Jets are present in many kinds of astrophysical scenarios. Characterizing radio jets in YSOs, where thermal emission allows one to determine their physical conditions in a reliable way, would also be useful in understanding acceleration and collimation mechanisms in all kinds of astrophysical jets, such as those associated with stellar and supermassive black holes and planetary nebulae.
Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Candidates for driving the flows include magnetic forces, but ionization state estimates suggest much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m/s, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upwards. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.