Purpose
To develop an open‐source, high‐performance, easy‐to‐use, extensible, cross‐platform, and general MRI simulation framework (Koma).
Methods
Koma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq‐compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions.
Results
Koma was compared to two well‐known open‐source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature.
Conclusions
Koma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.
The susceptibility of Super Paramagnetic Iron Oxide (SPIO) particles makes them a useful contrast agent for different purposes in MRI. These particles are typically quantified with relaxometry or by measuring the inhomogeneities they produced. These methods rely on the phase, which is unreliable for high concentrations. We present in this study a novel Deep Learning method to quantify the SPIO concentration distribution. We acquired the data with a new sequence called View Line in which the field map information is encoded in the geometry of the image. The novelty of our network is that it uses residual blocks as the bottleneck and multiple decoders to improve the gradient flow in the network. Each decoder predicts a different part of the wavelet decomposition of the concentration map. This decomposition improves the estimation of the concentration, and also it accelerates the convergence of the model. We tested our SPIO concentration reconstruction technique with simulated images and data from actual scans from phantoms. The simulations were done using images from the IXI dataset, and the phantoms consisted of plastic cylinders containing agar with SPIO particles at different concentrations. In both experiments, the model was able to quantify the distribution accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.