At present, new data sharing technologies, such as those used in the Internet of Things (IoT) paradigm, are being extensively adopted. For this reason, intelligent security controls have become imperative. According to good practices and security information standards, particularly those regarding security in depth, several defensive layers are required to protect information assets. Within the context of IoT cyber-attacks, it is fundamental to continuously adapt new detection mechanisms for growing IoT threats, specifically for those becoming more sophisticated within mesh networks, such as identity theft and cloning. Therefore, current applications, such as Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and Security Information and Event Management Systems (SIEM), are becoming inadequate for accurately handling novel security incidents, due to their signature-based detection procedures using the matching and flagging of anomalous patterns. This project focuses on a seldom-investigated identity attack—the Clone ID attack—directed at the Routing Protocol for Low Power and Lossy Networks (RPL), the underlying technology for most IoT devices. Hence, a robust Artificial Intelligence-based protection framework is proposed, in order to tackle major identity impersonation attacks, which classical applications are prone to misidentifying. On this basis, unsupervised pre-training techniques are employed to select key characteristics from RPL network samples. Then, a Dense Neural Network (DNN) is trained to maximize deep feature engineering, with the aim of improving classification results to protect against malicious counterfeiting attempts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.