A busca por produção de alimentos em grande escala continua sendo uma preocupação mundial. Nesse aspecto, realizada a detecção e contagem de plantas, estimar produção é uma área que está sendo explorada por técnicas de aprendizagem de máquina. Diante disso, este artigo tem como objetivo realizar um mapeamento bibliográfico das abordagens de aprendizagem de máquina aplicadas na estimativa de detecção e contagem de plantas. Com esse mapeamento, pretende-se avaliar se existem similaridades entre cultivos e técnicas escolhidas pelos autores e, dessa forma, propor uma modelagem para estudos futuros com imagens capturadas por VANTs. Para alcançar o objetivo proposto, foi aplicada uma string de busca em bases de dados e foram filtrados os resultados. Nesse mapeamento, 18 artigos foram relatados. Os resultados mostraram que o estado da arte indica que, modelos de Rede Neural Artificial (RNA), com destaque em Redes Neurais Convolucionais, estão sendo amplamente utilizados na contagem/estimativa de produção.
Este trabalho propõe uma Hiper-Heurística (HH) de seleção baseada na abordagem Thompson Sampling (TS) para a solução do Problema Quadrático de Alocação (PQA). O PQA tem como objetivo a alocação de instalações em um conjunto de possíveis localidades já conhecidas, a fim de minimizar o custo total de todas as movimentações entre as instalações. A HH proposta é aplicada na configuração automática de um algoritmo memético, atuando na seleção de uma combinação de heurísticas de baixo nível. Cada combinação envolve a seleção de uma heurística de recombinação, de uma estratégia de busca local e de uma heurística de mutação. O algoritmo foi analisado em 15 instâncias do benchmark Nug e o desempenho da HH é superior àquele obtido por qualquer combinação de heurísticas aplicada de forma isolada, demonstrando a sua eficiência na configuração automática do algoritmo. Os experimentos mostram que o desempenho da TS é afetado pela qualidade do conjunto de heurísticas de baixo nível. A melhor versão da HH obtém a solução ótima em 9 instâncias e o desvio médio percentual da solução ótima (gap), considerando todas as 15 instâncias foi de 8,6%, sendo que os maiores gaps foram encontrados para as três maiores instâncias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.