Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2 Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly-repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.
Severe drought conditions and extreme weather events are increasing worldwide with climate change, threatening the persistence of native plant communities and ecosystems. Many studies have investigated the genomic basis of plant responses to drought. However, the extent of this research throughout the plant kingdom is unclear, particularly among species critical for the sustainability of natural ecosystems. This study aimed to broaden our understanding of genome-to-phenome (G2P) connections in drought-stressed plants and identify focal taxa for future research. Bioinformatics pipelines were developed to mine and link information from databases and abstracts from 7730 publications. This approach identified 1634 genes involved in drought responses among 497 plant taxa. Most (83.30%) of these species have been classified for human use, and most G2P interactions have been described within model organisms or crop species. Our analysis identifies several gaps in G2P research literature and database connectivity, with 21% of abstracts being linked to gene and taxonomy data in NCBI. Abstract text mining was more successful at identifying potential G2P pathways, with 34% of abstracts containing gene, taxa, and phenotype information. Expanding G2P studies to include non-model plants, especially those that are adapted to drought stress, will help advance our understanding of drought responsive G2P pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.