The textile industry is very important because its products are widely used by society, however, this activity has a great contribution to the contamination of water resources due to its effluents that contain large amounts of colorants, among which is the blue of methylene (MB) and methyl orange (MO) that can cause damage to the health of living being. For this reason the present study concerned the removal of these dyes by adsorption using Eichhornia Crassipes (Water lily) with different treatments. The results show that the chemisorption removal process using two sites per dye molecule having an exothermic nature for the water-treated lily and for the NaOH-treated lily is endothermic. The maximum adsorption capacities of 228.9 mg/g for MB (60 °C) and 155.38 mg/g (30 °C) for MO with the NaOH treatment were achieved. The SEM analysis shows that there are significant changes in the surface due to the treatments. The XRD patterns indicate that with the pretreatment with NaOH the crystallinity of WL increases while the treatment with water maintains the presence of amorphous cellulose. In the FTIR spectra, the bands corresponding to different functional groups such as lignin, cellulose and hemicellulose that participate in the adsorption of both dyes are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.