Highlights d Neutrophil aging is an intrinsically driven, bona fide circadian process d Bmal1 and CXCR2 induce neutrophil aging, whereas CXCR4 antagonizes it d Diurnal aging critically dictates how and when neutrophils migrate into tissues d Aging favors neutrophil clearance, thereby protecting the cardiovascular system
Summary
Neutrophils require directional cues to navigate through the complex structure of venular walls and into inflamed tissues. Here we applied confocal intravital microscopy to analyze neutrophil emigration in cytokine-stimulated mouse cremaster muscles. We identified differential and non-redundant roles for the chemokines CXCL1 and CXCL2, governed by their distinct cellular sources. CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and pericytes and supported luminal and sub-EC neutrophil crawling. Conversely, neutrophils were the main producers of CXCL2, and this chemokine was critical for correct breaching of endothelial junctions. This pro-migratory activity of CXCL2 depended on the atypical chemokine receptor 1 (ACKR1), which is enriched within endothelial junctions. Transmigrating neutrophils promoted a self-guided migration response through EC junctions, creating a junctional chemokine “depot” in the form of ACKR1-presented CXCL2 that enabled efficient unidirectional luminal-to-abluminal migration. Thus, CXCL1 and CXCL2 act in a sequential manner to guide neutrophils through venular walls as governed by their distinct cellular sources.
Endotoxin tolerance was first described in a study that exposed animals to a sublethal dose of bacterial endotoxin. The animals subsequently survived a lethal injection of endotoxin. This refractory state is associated with the innate immune system and, in particular, with monocytes and macrophages, which act as the main participants. Several mechanisms are involved in the control of endotoxin tolerance; however, a full understanding of this phenomenon remains elusive. A number of recent reports indicate that clinical examples of endotoxin tolerance include not only sepsis but also diseases such as cystic fibrosis and acute coronary syndrome. In these pathologies, the risk of new infections correlates with a refractory state. This review integrates the molecular basis and clinical implications of endotoxin tolerance in various pathologies.
Monocyte exposure to LPS induces a transient state in which these cells are refractory to further endotoxin stimulation. This phenomenon, termed endotoxin tolerance (ET), is characterized by a decreased production of cytokines in response to the proinflammatory stimulus. We have established a robust model of ET and have determined the time frame and features of LPS unresponsiveness in cultured human monocytes. A large number of genes transcribed in tolerant monocytes were classified as either "tolerizable" or "nontolerizable" depending on their expression levels during the ET phase. Tolerant monocytes exhibit rapid IL-1R-associated kinase-M (IRAK-M) overexpression, high levels of triggering receptor expressed on myeloid cells-1 (TREM-1) and CD64, and a marked down-regulation of MHC molecules and NF-B2. These cells combine potent phagocytic activity with impaired capability for Ag presentation. We also show that circulating monocytes isolated from cystic fibrosis patients share all the determinants that characterize cells locked in an ET state. These findings identify a new mechanism that contributes to impaired inflammation in cystic fibrosis patients despite a high frequency of infections. Our results indicate that a tolerant phenotype interferes with timing, efficiency, and outcome of the innate immune responses against bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.