Host injury triggers feedback mechanisms that limit tissue damage. Conventional type 1 dendritic cells (cDC1s) express dendritic cell natural killer lectin group receptor-1 (DNGR-1), encoded by the gene Clec9a, which senses tissue damage and favors cross-presentation of dead-cell material to CD8+ T cells. Here we find that DNGR-1 additionally reduces host-damaging inflammatory responses induced by sterile and infectious tissue injury in mice. DNGR-1 deficiency leads to exacerbated caerulein-induced necrotizing pancreatitis and increased pathology during systemic Candida albicans infection without affecting fungal burden. This effect is B and T cell–independent and attributable to increased neutrophilia in DNGR-1–deficient settings. Mechanistically, DNGR-1 engagement activates SHP-1 and inhibits MIP-2 (encoded by Cxcl2) production by cDC1s during Candida infection. This consequently restrains neutrophil recruitment and promotes disease tolerance. Thus, DNGR-1–mediated sensing of injury by cDC1s serves as a rheostat for the control of tissue damage, innate immunity, and immunopathology.
Introduction: To evaluate the clinical impact of a comprehensive care bundle for the management of candidemia. Methods: A quasi-experimental pre-post study was implemented. During the pre-intervention period (May 2014-September 2015), a non-Enhanced digital features To view enhanced digital features for this article go to https://doi.org/10.6084/ m9.figshare.11550204.
Accurate knowledge of fungemia epidemiology requires identification of strains to the molecular level. Various studies have shown that the rate of resistance to fluconazole ranges from 2.5% to 9% in Candida spp. isolated from blood samples. However, trends in antifungal resistance have received little attention and have been studied only using CLSI M27-A3 methodology. We assessed the fungemia epidemiology in a large tertiary care institution in Madrid, Spain, by identifying isolates to the molecular level and performing antifungal susceptibility testing according to the updated breakpoints of European Committee for Antimicrobial Susceptibility Testing (EUCAST) definitive document (EDef) 7.2. We studied 613 isolates causing 598 episodes of fungemia in 544 patients admitted to our hospital (January 2007 to December 2013). Strains were identified after amplification and sequencing of the ITS1-5.8S-ITS2 region and further tested for in vitro susceptibility to amphotericin B, fluconazole, posaconazole, voriconazole, micafungin, and anidulafungin. Resistance was defined using EUCAST species-specific breakpoints, and epidemiological cutoff values (ECOFFs) were applied as tentative breakpoints. Most episodes were caused by Candida albicans (46%), Candida parapsilosis (28.7%), Candida glabrata (9.8%), and Candida tropicalis (8%). Molecular identification enabled us to better detect cryptic species of Candida guilliermondii and C. parapsilosis complexes and episodes of polyfungal fungemia. The overall percentage of fluconazole-resistant isolates was 5%, although it was higher in C. glabrata (8.6%) and non-Candida yeast isolates (47.4%). The rate of resistance to echinocandins was 4.4% and was mainly due to the presence of intrinsically resistant non-Candida species. Resistance mainly affected non-Candida yeasts. The rate of resistance to fluconazole and echinocandins did not change considerably during the study period.
We assessed the ability of the Etest performed directly on positive blood cultures (ET DIR ) to detect fluconazole susceptibility in 6 fluconazole-resistant and 12 fluconazole-susceptible Candida albicans isolates, according to CLSI M27-A3 and EUCAST EDef 7.2 procedures. Categorical agreement between ET DIR and broth microdilution was 100% when the trays were incubated at 25°C and trailing effect was ruled out. ET DIR is a reliable procedure when screening for the presence of fluconazole resistance in C. albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.