The IUPAC has recently clarified the term oxidation state (OS), and provided algorithms for its determination based on the ionic approximation (IA) of the bonds supported by atomic electronegativities (EN). Unfortunately, there are a number of exceptions and ambiguities in IUPAC's algorithms when it comes to practical applications. Our comprehensive study reveals the critical role of the chemical environment on establishing the OS, which cannot always be properly predicted using fix atomic EN values. By identifying what we define here as subsystems of enhanced stability within the molecular system, the OS can be safely assigned in many cases without invoking exceptions. New insights about the effect of local aromaticity upon OS are revealed. Moreover, we prove that there are intrinsic limitations of the IA that cannot be overcome. In this context, the effective oxidation state (EOS) analysis arises as a robust and general scheme to derive an OS without any external guidance.
The IUPAC has recently clarified the term oxidation state (OS), and provided algorithms for its determination based on the ionic approximation (IA) of the bonds supported by atomic electronegativities (EN). Unfortunately, there are a number of exceptions and ambiguities in IUPAC's algorithms when it comes to practical applications. Our comprehensive study reveals the critical role of the chemical environment on establishing the OS, which cannot always be properly predicted using fix atomic EN values. By identifying what we define here as subsystems of enhanced stability within the molecular system, the OS can be safely assigned in many cases without invoking exceptions. New insights about the effect of local aromaticity upon OS are revealed. Moreover, we prove that there are intrinsic limitations of the IA that cannot be overcome. In this context, the effective oxidation state (EOS) analysis arises as a robust and general scheme to derive an OS without any external guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.