Several heterobinuclear cyanide-bridged cationic complexes of the type [LnM,-CN-M,Ln]+, where LnMl and LnM2 are the fragments Fe(C5H5)(dppe) or cis-or rrans-Mn(CO)z(L-L)L [L-L = dppm, dppe; L = P(OPh),, PEt3; dppe = Ph2P(CH2CHz)PPh2; dppm = Ph,P(CH2)PPhJ, have been prepared as hexafluorophosphate salts by reacting the appropriate mononuclear complexes LnM,-CN and X-MzLn (X = Br, I) in the presence of TIPF6 or (NH4)PF6 as halogen abstractors. The oxidation of these compounds have been studied electrochemically by cyclic voltammetry and chemically by infrared spectroscopy. The results indicated that the first oxidation of the cations affects the Fe or Mn fragment depending on its position relative to the cyanide bridge and the stereochemistry (cis or trans) of the dicarbonyl fragments. When the oxidation affects a cis-Mn(CO),(L-L)L moiety, a very rapid isomerization to the trans form is observed and, in the case of the cis-dicarbonyl complexes [(C5H,)(dppe)Fe-CNMn(CO),(L-L)L]', the first oxidation takes place at Fe but is followed by electron transfer to Mn with concomitant isomerization to the irons-dicarbonyl form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.