Spectrum sharing mechanisms have evolved to meet different needs related to increasing spectrum use efficiency. At first, decentralized and opportunistic cognitive radios (and cognitive radio networks) were the primary focus of research for these mechanisms. This gradually transitioned towards the development of cooperative sharing methods based on databases, typified by TV White Spaces databases. Spectrum sharing is now the basis for the dynamic and fine-grained spectrum rights regime for the Citizen's Band Radio Service (CBRS) as well as for License Shared Access (LSA).The emergence of the cryptocurrency Bitcoin has stimulated interest in applying its underlying technology, blockchain, to other applications as well, such as securities trading and supply chain management. This paper explores the application of blockchain to radio spectrum management. While blockchains could underlie radio spectrum management more broadly, we will focus on dynamic spectrum sharing applications. Like the cooperative approaches currently in use, blockchain is a database technology. However, a blockchain is a decentralized database in which the owner of the data maintains control. We consider the benefits and limitations of blockchain solutions in general, and then examine their potential application to four major categories of spectrum sharing. The use of blockchain technology in spectrum management could have significant implications for stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.