In the enriched carbon dioxide atmosphere expected in the next century, many species of herbivorous insects will confront less nutritious host plants that will induce both lengthened larval developmental times and greater mortality. The limited data currently available suggest that the effect of increased atmospheric CO2 on herbivory will be not only highly species‐specific but also specific to each insect‐plant system. Several scenarios can be predicted, however: (1) local extinctions will occur; (2) the endangered species status as well as the pest status of some insect species will change; (3) geographic distributions for some insect species will shift with host‐plant ranges; and (4) changes in the population dynamics of affected insect species will influence their interactions with other insects and plants. For insect conservation purposes, it is critical to begin long‐term studies on the effects of enhanced CO2 levels on insect populations. An analysis of the available literature indicates that many orders containing insect species important for ecosystem conservation, and even those important as agricultural or medical pests, have not been examined. Without a major increase in research on this topic, we will be unprepared for the species changes that will occur, we will lose the opportunity to document just how some insects adapt to elevated CO2 levels, and we will lack the information necessary for effective conservation efforts.
Plant allocation to defensive compounds in response to growth in elevated atmospheric CO(2) in combination with two levels of nitrogen was examined. The aim was to discover if allocation patterns of transgenic plants containing genes for defensive chemicals which had not evolved in the species would respond as predicted by the Carbon Nutrient Balance (CNB) hypothesis. Cotton plants (Gossypium hirsutum L.) were sown inside 12 environmental chambers. Six of them were maintained at an elevated CO(2) level of 900 micromol mol(-1) and the other six at the current level of approximately 370 micromol mol(-1). Half the plants in each chamber were from a transgenic line producing Bacillus thuringiensis (Bt) toxin and the others were from a near isogenic line without the Bt gene. The allocation to total phenolics, condensed tannins, and gossypol and related terpenoid aldehydes was measured. All the treatments were bioassayed against a non-target insect herbivore found on cotton, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Plants had lower N concentrations and higher C:N ratios when grown in elevated CO(2). Carbon defensive compounds increased in elevated CO(2), low N availability or both. The increase in these compounds in elevated CO(2) and low N, adversely affected growth and survival of S. exigua. The production of the nitrogen-based toxin was affected by an interaction between CO(2) and N; elevated CO(2) decreased N allocation to Bt, but the reduction was largely alleviated by the addition of nitrogen. The CNB hypothesis accurately predicted only some of the results, and may require revision. These data indicate that for the future expected elevated CO(2) concentrations, plant allocation to defensive compounds will be affected enough to impact plant-herbivore interactions.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.