The pulsatile secretion of gonadotropin-releasing hormone (GnRH) from normal and immortalized hypothalamic GnRH neurons is highly calcium-dependent and is stimulated by cAMP. It is also influenced by agonist activation of the endogenous GnRH receptor (GnRH-R), which couples to Gq/11 as indicated by release of membrane-bound ␣q/11 subunits and increased inositol phosphate͞Ca 2؉ signaling. Conversely, GnRH antagonists increase membrane-associated ␣q/11 subunits and abolish pulsatile GnRH secretion. GnRH also stimulates cAMP production but at high concentrations has a pertussis toxinsensitive inhibitory effect, indicative of receptor coupling to Gi. Coupling of the agonist-activated GnRH-R to both Gs and Gi proteins was demonstrated by the ability of nanomolar GnRH concentrations to reduce membrane-associated ␣s and ␣i3 levels and of higher concentrations to diminish ␣i3 levels. Conversely, ␣i3 was increased during GnRH antagonist and pertussis toxin treatment, with concomitant loss of pulsatile GnRH secretion. In cholera toxin-treated GnRH neurons, decreases in ␣s immunoreactivity and increases in cAMP production paralleled the responses to nanomolar GnRH concentrations. Treatment with cholera toxin and 8-bromo-cAMP amplified episodic GnRH pulses but did not affect their frequency. These findings suggest that an agonist concentration-dependent switch in coupling of the GnRH-R between specific G proteins modulates neuronal Ca 2؉ signaling via Gs-cAMP stimulatory and Gi-cAMP inhibitory mechanisms. Activation of Gi may also inhibit GnRH neuronal function and episodic secretion by regulating membrane ion currents. This autocrine mechanism could serve as a timer to determine the frequency of pulsatile GnRH release by regulating Ca 2؉ -and cAMPdependent signaling and GnRH neuronal firing.
Immortalized GnRH neurons (GT1-7) express receptors for estrogen [estrogen receptor-alpha and -beta(ERalpha and ERbeta)] and progesterone (progesterone receptor A) and exhibit positive immunostaining for both intracellular and plasma membrane ERs. Exposure of GT1-7 cells to picomolar estradiol concentrations for 5-60 min caused rapid, sustained, and dose-dependent inhibition of cAMP production. In contrast, treatment with nanomolar estradiol concentrations for 60 min increased cAMP production. The inhibitory and stimulatory actions of estradiol on cAMP formation were abolished by the ER antagonist, ICI 182,780. The estradiol-induced inhibition of cAMP production was prevented by treatment with pertussis toxin, consistent with coupling of the plasma membrane ER to an inhibitory G protein. Coimmunoprecipitation studies demonstrated an estradiol-regulated stimulatory interaction between ERalpha and Galphai3 that was prevented by the ER antagonist, ICI 182,780. Exposure of perifused GT1-7 cells and hypothalamic neurons to picomolar estradiol levels increased the GnRH peak interval, shortened peak duration, and increased peak amplitude. These findings indicate that occupancy of the plasma membrane-associated ERs expressed in GT1-7 neurons by physiological estradiol levels causes activation of a Gi protein and modulates cAMP signaling and neuropeptide secretion.
Agonist activation of cholinergic receptors expressed in perifused hypothalamic and immortalized GnRH-producing (GT1-7) cells induced prominent peaks in GnRH release, each followed by a rapid decrease, a transient plateau, and a decline to below basal levels. The complex profile of GnRH release suggested that acetylcholine (ACh) acts through different cholinergic receptor subtypes to exert stimulatory and inhibitory effects on GnRH release. Whereas activation of nicotinic receptors caused a transient increase in GnRH release, activation of muscarinic receptors inhibited basal GnRH release. Nanomolar concentrations of ACh caused dose-dependent inhibition of cAMP production that was prevented by pertussis toxin (PTX), consistent with the activation of a plasma-membrane Gi protein. Micromolar concentrations of ACh also caused an increase in phosphoinositide hydrolysis that was inhibited by the M1 receptor antagonist, pirenzepine. In ACh-treated cells, immunoblot analysis revealed that membrane-associated G(alpha q/11) immunoreactivity was decreased after 5 min but was restored at later times. In contrast, immunoreactive G(alpha i3) was decreased for up to 120 min after ACh treatment. The agonist-induced changes in G protein alpha-subunits liberated during activation of muscarinic receptors were correlated with regulation of their respective transduction pathways. These results indicate that ACh modulates GnRH release from hypothalamic neurons through both M1 and M2 muscarinic receptors. These receptor subtypes are coupled to Gq and Gi proteins that respectively influence the activities of PLC and adenylyl cyclase/ion channels, with consequent effects on neurosecretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.