Background: More than one-third of COVID-19 patients present neurological symptoms ranging from anosmia to stroke and encephalopathy. Furthermore, pre-existing neurological conditions may require special treatment and may be associated with worse outcomes. Notwithstanding, the role of neurologists in COVID-19 is probably underrecognized. Objective: The aim of this study was to report the reasons for requesting neurological consultations by internists and intensivists in a COVID-19-dedicated hospital. Methods: This retrospective study was carried out at Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil, a 900-bed COVID-19 dedicated center (including 300 intensive care unit beds). COVID-19 diagnosis was confirmed by SARS-CoV-2-RT-PCR in nasal swabs. All inpatient neurology consultations between March 23rd and May 23rd, 2020 were analyzed. Neurologists performed the neurological exam, assessed all available data to diagnose the neurological condition, and requested additional tests deemed necessary. Difficult diagnoses were established in consensus meetings. After diagnosis, neurologists were involved in the treatment. Results: Neurological consultations were requested for 89 out of 1,208 (7.4%) inpatient COVID admissions during that period. Main neurological diagnoses included: encephalopathy (44.4%), stroke (16.7%), previous neurological diseases (9.0%), seizures (9.0%), neuromuscular disorders (5.6%), other acute brain lesions (3.4%), and other mild nonspecific symptoms (11.2%). Conclusions: Most neurological consultations in a COVID-19-dedicated hospital were requested for severe conditions that could have an impact on the outcome. First-line doctors should be able to recognize neurological symptoms; neurologists are important members of the medical team in COVID-19 hospital care.
Transcranial direct current stimulation is a noninvasive brain stimulation technique that has been studied for the treatment of neuropsychiatric disorders in adults, with minimal side effects. The objective of this study is to report the feasibility, tolerability, and the short-term adverse effects of transcranial direct current stimulation in children from 5 to 12 years of age. It is a naturalistic study of 14 children who underwent 10 sessions of transcranial direct current stimulation as an alternative, off-label, and open-label treatment for various languages disorders. Frequency, intensity, adverse effects, and perception of improvement reported by parents were collected. The main side effects detected were tingling (28.6%) and itching (28.6%), acute mood changes (42.9%), and irritability (35.7%). Transcranial direct current stimulation is a feasible and tolerable technique in children, although studies regarding plastic and cognitive changes in children are needed to confirm its safety. In conclusion, this is a naturalistic report in which we considered transcranial direct current stimulation as feasible in children.
Background: Neurological manifestations of COVID-19 are still incompletely understood. Neurological manifestations may be due to direct viral effect on neurons and glial cells, to an immune-mediated response to the virus, or to a hypercoagulable state and associated endothelial damage, as well as to severe systemic disease with prolonged intensive care unit stay. Objective: To describe two patients with severe SARS-CoV-2 infection and delayed recovery of consciousness after sedation withdrawal, in whom MRI disclosed multifocal white matter brain lesions, compatible with the diagnosis of acute disseminated encephalomyelitis. Methods: Observational report of two cases of severe COVID-19 infection in patients from two tertiary hospitals in São Paulo, Brazil. Results: These patients underwent neurologic and systemic evaluation for delayed awakening after sedation withdrawal. MRI displayed multifocal centrum semiovale lesions, suggestive of demyelinating inflammation. Cerebrospinal fluid (CSF) polymerase chain reaction (PCR) for SARS-CoV-2 was negative in both cases. Conclusion: A recurrent pattern of multifocal white matter lesions can occur in COVID-19 patients, possibly associated with delayed awakening. Additional studies are necessary to elucidate the role of the viral infection and of inflammatory and immune-mediated associated changes in neurological manifestations of COVID-19.
Background Brain abnormalities are a concern in COVID-19, so we used minimally invasive autopsy (MIA) to investigate it, consisting of brain 7T MR and CT images and tissue sampling via transethmoidal route with at least three fragments: the first one for reverse transcription polymerase chain reaction (RT-PCR) analysis and the remaining fixed and stained with hematoxylin and eosin. Two mouse monoclonal anti-coronavirus (SARS-CoV-2) antibodies were employed in immunohistochemical (IHC) reactions. Results Seven deceased COVID-19 patients underwent MIA with brain MR and CT images, six of them with tissue sampling. Imaging findings included infarcts, punctate brain hemorrhagic foci, subarachnoid hemorrhage and signal abnormalities in the splenium, basal ganglia, white matter, hippocampi and posterior cortico-subcortical. Punctate brain hemorrhage was the most common finding (three out of seven cases). Brain histological analysis revealed reactive gliosis, congestion, cortical neuron eosinophilic degeneration and axonal disruption in all six cases. Other findings included edema (5 cases), discrete perivascular hemorrhages (5), cerebral small vessel disease (3), perivascular hemosiderin deposits (3), Alzheimer type II glia (3), abundant corpora amylacea (3), ischemic foci (1), periventricular encephalitis foci (1), periventricular vascular ectasia (1) and fibrin thrombi (1). SARS-CoV-2 RNA was detected with RT-PCR in 5 out of 5 and IHC in 6 out 6 patients (100%). Conclusions Despite limited sampling, MIA was an effective tool to evaluate underlying pathological brain changes in deceased COVID-19 patients. Imaging findings were varied, and pathological features corroborated signs of hypoxia, alterations related to systemic critically ill and SARS-CoV-2 brain invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.