Some assessment and diagnosis methods require palpation or the application of certain forces on the skin, which affects the structures beneath, we highlight the importance of defining possible influences on skin temperature as a result of this physical contact. Thus, the aim of the present study is to determine the ideal time for performing thermographic examination after palpation based on the assessment of skin temperature evolution. Randomized and crossover study carried out with 15 computer-user volunteers of both genders, between 18 and 45 years of age, who were submitted to compressive forces of 0, 1, 2 and 3 kg/cm2 for 30 seconds with a washout period of 48 hours using a portable digital dynamometer. Compressive forces were applied on the following spots on the dominant upper limb: myofascial trigger point in the levator scapulae, biceps brachii muscle and palmaris longus tendon. Volunteers were examined by means of infrared thermography before and after the application of compressive forces (15, 30, 45 and 60 minutes). In most comparisons made over time, a significant decrease was observed 30, 45 and 60 minutes after the application of compressive forces (p < 0.05) on the palmaris longus tendon and biceps brachii muscle. However, no difference was observed when comparing the different compressive forces (p > 0.05). In conclusion, infrared thermography can be used after assessment or diagnosis methods focused on the application of forces on tendons and muscles, provided the procedure is performed 15 minutes after contact with the skin. Regarding to the myofascial trigger point, the thermographic examination can be performed within 60 minutes after the contact with the skin.
The use of static ultrasound or diadynamic currents on myofascial trigger points in upper trapezius associated with a manual therapy program did not generate greater benefits than manual therapy alone.
Objective: The aim of the study was to perform a literature review to analyze the effect of photobiomodulation in experimental studies on peripheral nerve regeneration after sciatic nerve crush injury in rodents. Methods: A bibliographic search was performed in the electronic databases, including MEDLINE (PubMed), SCOPUS, and SciELO, from 2008 to 2018. Results: A total of 1912 articles were identified in the search, and only 19 fulfilled all the inclusion criteria. Along with the parameters most found in the manuscripts, the most used wavelengths were 660 nm and 830 nm, power of 30 and 40 mW, and energy density of 4 and 10 J/cm2 . For total energy throughout the intervention period, the lowest energy found with positive effects was 0.70 J, and the highest 1.141 J. Seventeen studies reported positive effects on nerve regeneration. The variables selected to analyze the effect were: Sciatic Functional Index (SFI), Static Sciatic Index (SSI), morphometric, morphological, histological, zymographic, electrophysiological, resistance mechanics and range of motion (ROM). The variety of parameters used in the studies demonstrated that there is yet no pre-determined protocol for treating peripheral nerve regeneration. Only two studies by different authors used the same power, energy density, beam area, and power density. Conclusion: It was concluded that the therapeutic window of the photobiomodulation presents a high variability of parameters with the wavelength (632.8 to 940 nm), power (5 to 170 mW) and energy density (3 to 280 J /cm2 ), promoting nerve regeneration through the expression of cytokines and growth factors that aid in modulating the inflammatory process, improving morphological aspects, restoring the functionality to the animals in a brief period.
Purpose
Daily clinical use of therapeutic light sources can lead to changes in light emission stability with potentially significant consequences for usage in photomedicine treatment. The aim of this study was to evaluate the average and maximum power and to describe the beam diameter of different low-power laser photobiomodulation devices in clinical use in Brazil.
Methods
The power and light-emitting beam diameter of twenty-four therapeutic devices with an average age of 11±5 years, with an average weekly use of fewer than thirty minutes, were measured.
Results
The analyzed power varied between 2% to 134% of the values declared by the manufacturers. Differences in beam diameter of between 38% and 543% of the nominal values were also observed. It is also noteworthy that even between the same brand and model, differences in diameter were obtained. Finally, differences were observed in the power output after one and three minutes of sequential emission for 830 nm and 904 nm (p < 0.05), but not when comparing the difference between wavelengths in factor time.
Conclusion
There is a need for a shared effort on the part of laser manufacturers to improve standardization and consistency of laser output power and beam diameters. At the same time, medical laser operators should also consider development of standardized protocols for maintenance and monitoring equipment performance over time to correct for fluctuations that could ultimately impact on treatment outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.