Optimization methods are frequently applied to solve real-world problems such, engineering design, computer science, and computational chemistry. This paper aims to compare gradient-based algorithms and the meta-heuristic particle swarm optimization to minimize the multidimensional benchmark Griewank function, a multimodal function with widespread local minima. Several approaches of gradient-based methods such as steepest descent, conjugate gradient with Fletcher-Reeves and Polak-Ribiere formulations, and quasi-Newton Davidon-Fletcher-Powell approach were compared. The results presented showed that the meta-heuristic method is recommended for function with this behavior because is no needed prior information of the search space. The performance comparison includes computation time and convergence of global and local optimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.