Abstract. We present a fast direct solver for two dimensional scattering problems, where an incident wave impinges on a penetrable medium with compact support. We represent the scattered field using a volume potential whose kernel is the outgoing Green's function for the exterior domain. Inserting this representation into the governing partial differential equation, we obtain an integral equation of the Lippmann-Schwinger type. The principal contribution here is the development of an automatically adaptive, high-order accurate discretization based on a quad tree data structure which provides rapid access to arbitrary elements of the discretized system matrix. This permits the straightforward application of state-of-the-art algorithms for constructing compressed versions of the solution operator. These solvers typically require O(N 3/2 ) work, where N denotes the number of degrees of freedom. We demonstrate the performance of the method for a variety of problems in both the low and high frequency regimes.
Abstract. We describe a fast, stable algorithm for the solution of the inverse acoustic scattering problem in two dimensions. Given full aperture far field measurements of the scattered field for multiple angles of incidence, we use Chen's method of recursive linearization to reconstruct an unknown sound speed at resolutions of thousands of square wavelengths in a fully nonlinear regime. Despite the fact that the underlying optimization problem is formally ill-posed and non-convex, recursive linearization requires only the solution of a sequence of linear least squares problems at successively higher frequencies. By seeking a suitably band-limited approximation of the sound speed profile, each least squares calculation is well-conditioned and involves the solution of a large number of forward scattering problems, for which we employ a recently developed, spectrally accurate, fast direct solver. For the largest problems considered, involving 19,600 unknowns, approximately one million partial differential equations were solved, requiring approximately two days to compute using a parallel MATLAB implementation on a multi-core workstation.
We consider the problem of reconstructing the shape of an impenetrable sound-soft obstacle from scattering measurements. The input data is assumed to be the far-field pattern generated when a plane wave impinges on an unknown obstacle from one or more directions and at one or more frequencies. It is well known that this inverse scattering problem is both ill posed and nonlinear. It is common practice to overcome the ill posedness through the use of a penalty method or Tikhonov regularization. Here, we present a more physical regularization, based simply on restricting the unknown boundary to be band-limited in a suitable sense. To overcome the nonlinearity of the problem, we use a variant of Newton's method. When multiple frequency data is available, we supplement Newton's method with the recursive linearization approach due to Chen.During the course of solving the inverse problem, we need to compute the solution to a large number of forward scattering problems. For this, we use high-order accurate integral equation discretizations, coupled with fast direct solvers when the problem is sufficiently large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.