The Dual Connectivity (DC) technology has gained a lot of momentum in the LTE Release 12 as a means to enhance the per-user throughput and provide mobility robustness. Some studies in the literature have discussed a coupling between the LTE and the air interface of the upcoming Fifth Generation (5G) in a DC scenario. That integration may provide some benefits to meet the high throughput demands, reliability and availability requirements of the 5G networks. This paper presents a brief overview of the DC technology considering the inter-generations coupling and discusses some challenges involving Radio Resource Management (RRM) in such scenario.
In this paper, a new stochastic channel model (SCM) is proposed for fifth-generation (5G) systems. By means of the sum-of-sinusoids (SoS) method to generate spatially consistent random variables (SCRVs), the proposed model extends the 3rd Generation Partnership Project (3GPP)-SCM by considering three important features for accurate simulations in 5G, i.e., support for dual mobility, spatial correlation at both ends of the link and considerable reductions of the required memory consumption when compared with existing models. A typical problem presented in existing channel models, namely the generation of uncorrelated large scale parameters (LSPs) and small scale parameters (SSPs) for close base stations (BSs), is solved, then allowing for more realistic numerical evaluations in most of the 5G scenarios characterized by a large density of BSs and user equipments (UEs) per unit of area, such as ultra-dense networks (UDNs), indoor environments, device-to-device (D2D) and vehicular-to-vehicular (V2V). The proposed model emerges as the first SCM, and therein lower complexity when compared with ray-tracing (RT)based models, that comprises all the following features: support for single and dual mobility with spatial consistency, smooth time evolution, dynamic modeling, large antenna array, frequency range up 100 GHz and bandwidth up to 2 GHz. Some of the features are calibrated for single mobility in selected scenarios and have shown a good agreement with the calibration results found in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.