This paper gives the results of a set of laboratory experiments designed to analyse the petrological implications of mantle wedge plumesçlarge buoyant structures predicted by thermomechanical numerical modelling of subduction zones. A particular design of layered capsule was used to simulate the complex multilayer formed by intense flow within the mantle wedge as predicted by numerical models. A basaltic [mid-ocean ridge basalt (MORB)-derived amphibolite] component was sandwiched between two adjacent layers of a sedimentary (Bt-rich metagreywacke) component. Conditions were fixed at temperatures of 1000^12008C at pressures of 1•5^2•0 GPa. Our results suggest that significant volumes of hybrid, Cordilleran-type granodioritic magmas can be generated by sub-lithospheric partial melting of a mechanically mixed source. Partial melting of the end-members is not buffered, forming granitic (melting of metasediment) and trondhjemitic (melting of MORB) melts in high-variance assemblages Melt þ Grt þ Pl and Melt þ Grt þ Cpx, respectively. However, the composition of melts formed from partial melting of metasediment^MORB me¤ langes is buffered for sediment-to-MORB ratios ranging from 3:1 to 1:3, producing liquids of granodiorite to tonalite composition along a cotectic with the lower-variance phase assemblage Melt þ Grt þ Cpx þ Pl. Our model explains the geochemical and isotopic characteristics of Cordilleran batholiths. In particular, it accounts for the observed decoupling between major element and isotopic compositions. Large variations in isotopic ratios can be inherited from a compositionally heterogeneous source; however, major element compositions are more strongly dependent on the temperature of melting rather than on the composition of the source.
The existence of genetic variation in wheat for tolerance to high temperature stress has been reported but cultivars released for a particular production system often are not characterized. The objective of this study was to identify and describe the characteristics of wheat cultivars adapted to production systems with risks of high temperature during the post-heading period. Fifteen diverse wheat cultivars and one unreleased genotype were evaluated at the Texas A&M University Agricultural Research and Extension Center, Uvalde, TX, during two seasons characterized by daily maximum temperatures as high as 36°C. Measurements during both seasons included days to heading, days to physiological maturity and grain yield. Large and significant (P < 0.05) grain yield differences were measured among cultivars within each season. Yield varied between 2979 and 4671 kg ha )1 in the first season and between 1916 and 5200 kg ha )1 in the second season. Late planting in the second season delayed heading date resulting in the post-heading period to coincide with periods of high temperatures. Cultivars that headed early, in general, yielded better than cultivars that headed later within each season with yield reduction of 35.3 kg ha )1 in the first season and 91.0 kg ha )1 in the second season for every 1 day delay in heading after mid-March. Earlyheading cultivars outperformed later-heading cultivars because of two distinct advantages: the early-heading cultivars had longer post-heading and, therefore, longer grain filling period than the later-heading cultivars. In addition, early-heading cultivars completed a greater fraction of the grain filling earlier in the season when air temperatures were lower and generally more favourable. The advantage of earlier-heading cultivars was also manifested in the amount of green leaves retained to anthesis. Earlier-heading cultivars produced fewer total leaves per tiller but retained more green leaves and lost fewer leaves to senescence at anthesis than later-heading cultivars. The results suggest that early heading is an important and effective single trait defining wheat cultivars adapted to production systems prone to high temperature stress during the post-heading period.
Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.