Healthcare organizations are confronted with challenges including the contention between tightening budgets and increased care needs. In the light of these challenges, they are becoming increasingly aware of the need to improve their processes to ensure quality of care for patients. To identify process improvement opportunities, a thorough process analysis is required, which can be based on real-life process execution data captured by health information systems. Process mining is a research field that focuses on the development of techniques to extract process-related insights from process execution data, providing valuable and previously unknown information to instigate evidence-based process improvement in healthcare. However, despite the potential of process mining, its uptake in healthcare organizations outside case studies in a research context is rather limited. This observation was the starting point for an international brainstorm seminar. Based on the seminar's outcomes and with the ambition to stimulate a more widespread use of process mining in healthcare, this paper formulates recommendations to enhance the usability and understandability of process mining in healthcare. These recommendations are mainly targeted towards process mining researchers and the community to consider when developing a new research agenda for process mining in healthcare. Moreover, a limited number of recommendations are directed towards healthcare organizations and health information systems vendors, when shaping an environment to enable the continuous use of process mining.
The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.