ObjectivesIntraductal papillary mucinous neoplasms (IPMNs) are pancreatic cysts that can progress to invasive pancreatic cancer. Associations between oncogenesis and oral microbiome alterations have been reported. This study aims to investigate a potential intracystic pancreatic microbiome in a pancreatic cystic neoplasm (PCN) surgery patient cohort.DesignPaired cyst fluid and plasma were collected at pancreatic surgery from patients with suspected PCN (n=105). Quantitative and qualitative assessment of bacterial DNA by qPCR, PacBio sequencing (n=35), and interleukin (IL)-1β quantification was performed. The data were correlated to diagnosis, lesion severity and clinical and laboratory profile, including proton-pump inhibitor (PPI) usage and history of invasive endoscopy procedures.ResultsIntracystic bacterial 16S DNA copy number and IL-1β protein quantity were significantly higher in IPMN with high-grade dysplasia and IPMN with cancer compared with non-IPMN PCNs. Despite high interpersonal variation of intracystic microbiota composition, bacterial network and linear discriminant analysis effect size analyses demonstrated co-occurrence and enrichment of oral bacterial taxa including Fusobacterium nucleatum and Granulicatella adiacens in cyst fluid from IPMN with high-grade dysplasia. The elevated intracystic bacterial DNA is associated with, but not limited to, prior exposure to invasive endoscopic procedures, and is independent from use of PPI and antibiotics.ConclusionsCollectively, these findings warrant further investigation into the role of oral bacteria in cystic precursors to pancreatic cancer and have added values on the aetiopathology as well as the management of pancreatic cysts.
Carcinoma-associated pancreatic fibroblasts (CAFs) are the major type of cells in the stroma of pancreatic ductal adenocarcinomas and besides their pathological release of extracellular matrix proteins, they are also perceived as key contributors to immune evasion. Despite the known relevance of tumor infiltrating lymphocytes in cancers, the interactions between T-cells and CAFs remain largely unexplored. Here, we found that CAFs isolated from tumors of pancreatic cancer patients undergoing surgical resection ( n = 15) expressed higher levels of the PD-1 ligands PD-L1 and PD-L2 compared to primary skin fibroblasts from healthy donors. CAFs strongly inhibited T-cell proliferation in a contact-independent fashion. Blocking the activity of prostaglandin E 2 (PGE 2 ) by indomethacin partially restored the proliferative capacity of both CD4 + and CD8 + T-cells. After stimulation, the proportion of proliferating T-cells expressing HLA-DR and the proportion of memory T-cells were decreased when CAFs were present compared to T-cells proliferating in the absence of CAFs. Interestingly, CAFs promoted the expression of TIM-3, PD-1, CTLA-4 and LAG-3 in proliferating T-cells. Immunohistochemistry stainings further showed that T-cells residing within the desmoplastic stromal compartment express PD-1, indicating a role for CAFs on co-inhibitory marker expression also in vivo . We further found that PGE 2 promoted the expression of PD-1 and TIM-3 on T-cells. Functional assays showed that proliferating T-cells expressing immune checkpoints produced less IFN-γ, TNF-α, and CD107a after restimulation when CAFs had been present. Thus, this indicates that CAFs induce expression of immune checkpoints on CD4 + and CD8 + T-cells, which contribute to a diminished immune function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.