Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.
The increasing limitations in the use of fossil fuels due to their limited availability and pollution have increased the use of renewable energies and storage systems for electricity generation. To achieve the goals of the integration of renewable energy, sizing and management methods for hybrid plants are needed to make investments profitable and attractive in these resources. This work presents an optimization method for the sizing and operation of hybrid plants with storage, choosing the best combination of technologies based on resource availability, installation costs and market prices, maximizing an economic index such as the net present value. One of the main contributions of this work is to reduce the oversizing that occurs in traditional methods through a penalty term for lost energy, encouraging investment in batteries to store excess energy above the point of interconnection (POI). In addition, it is intended to cover gaps such as the operation in coupled markets with different execution periods to maximize the benefits of the investment made and to contemplate different generation alternatives together with storage. The presented method is tested through sizing and operation simulations to demonstrate its potential. The presented method is tested through sizing and operation simulations to demonstrate its potential. In scenario A, the best combination of solar energy, photovoltaic energy and storage, is chosen. In scenario B, it is shown how the curtailment of the oversizing is reduced in some months by more than 5%. In scenario C, for daily operation in coupled markets, it is possible to improve the benefits from 0.7% to 37.04% in the days of the year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.