We consider a framework where decision makers (DMs) interactively define a multicriteria evaluation model by providing imprecise information (i.e., a linear system of constraints to the modelÕs parameters) and by analyzing the consequences of the information provided. DMs may introduce new constraints explicitly or implicitly (results that the model should yield). If a new constraint is incompatible with the previous ones, then the system becomes inconsistent and the DMs must choose between removing the new constraint or removing some of the older ones. We address the problem of identifying subsets of constraints which, when removed, lead to a consistent system. Identifying such subsets would indicate the reason for the inconsistent information given by DMs. There may exist several possibilities for the DMs to resolve the inconsistency. We present two algorithms to identify such possibilities, one using {0,1} mixed integer linear programming and the other one using linear programming. Both approaches are based on the knowledge that the system was consistent prior to introducing the last constraint. The output of these algorithms helps the DM to identify the conflicting pieces of information in a set of statements he/she asserted. The relevance of these algorithms for MCDA is illustrated by an application to an aggregation/disaggregation procedure for the Electre Tri method.
In this paper, we present an aggregate production planning (APP) model applied to a Portuguese firm that produces construction materials. A multiple criteria mixed integer linear programming (MCMILP) model is developed with the following performance criteria: (1) maximize profit, (2) minimize late orders, and (3) minimize work force level changes. It includes certain operational features such as partial inflexibility of the work force, legal restrictions on workload, work force size (workers to be hired and downsized), workers in training, and production and inventory capacity. The purpose is to determine the number of workers for each worker type, the number of overtime hours, the inventory level for each product category, and the level of subcontracting in order to meet the forecasted demand for a planning period of 12 months. Additionally, a decision support system (DSS) based on the MCMILP model is proposed. It will help practitioners find the "best" solution for an APP problem without having to familiarize themselves with the mathematical complexities associated with the model. An example to illustrate the use of the DSS is also included.
The most efficient algorithms for solving the single-criterion {0, 1}-knapsack problem are based on the core concept (i.e., based on a small number of relevant variables). But this concept is not used in problems with more than one criterion. The main purpose of this paper is to validate the existence of such a set of variables in bi-criteria {0.1}-knapsack instances. Numerical experiments were performed on five types of {0, 1}-knapsack instances. The results are presented for the supported and non-supported solutions as well as for the entire set of efficient solutions. A description of an approximate and an exact method is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.