BackgroundThe demographic transition of populations from rural areas to large urban centers often results in a disordered occupation of forest remnants and increased economic pressure to develop high-income buildings in these areas. Ecological and socioeconomic factors associated with these urban transitions create conditions for the potential transmission of infectious diseases, which was demonstrated for Chagas disease.Methodology/Principal FindingsWe analyzed 930 triatomines, mainly Triatoma tibiamaculata, collected in artificial and sylvatic environments (forests near houses) of a suburban area of the city of Salvador, Bahia State, Brazil between 2007 and 2011. Most triatomines were captured at peridomiciles. Adult bugs predominated in all studied environments, and nymphs were scarce inside houses. Molecular analyses of a randomly selected sub-sample (n=212) of triatomines showed Trypanosoma cruzi infection rates of 65%, 50% and 56% in intradomestic, peridomestic and sylvatic environments, respectively. We detected the T. cruzi lineages I and II and mixed infections. We also showed that T. tibiamaculata fed on blood from birds (50%), marsupials (38%), ruminants (7%) and rodents (5%). The probability of T. cruzi infection was higher in triatomines that fed on marsupial blood (odds ratio (OR) = 1.95, 95% confidence interval (CI) = 1.22-3.11). Moreover, we observed a protective effect against infection in bugs that fed on bird blood (OR = 0.43, 95% CI = 0.30-0.73).Conclusions/SignificanceThe frequent invasion of houses by infected triatomines indicates a potential risk of T. cruzi transmission to inhabitants in this area. Our results reinforce that continuous epidemiological surveillance should be performed in areas where domestic transmission is controlled but enzootic transmission persists.
BackgroundThe identification of Trypanosoma cruzi and blood-meal sources in synanthropic triatomines is important to assess the potential risk of Chagas disease transmission. We identified T. cruzi infection and blood-meal sources of triatomines caught in and around houses in the state of Bahia, northeastern Brazil, and mapped the occurrence of infected triatomines that fed on humans and domestic animals.MethodsTriatominae bugs were manually captured by trained agents from the Epidemiologic Surveillance team of Bahia State Health Service between 2013 and 2014. We applied conventional PCR to detect T. cruzi and blood-meal sources (dog, cat, human and bird) in a randomized sample of triatomines. We mapped triatomine distribution and analyzed vector hotspots with kernel density spatial analysis.ResultsIn total, 5906 triatomines comprising 15 species were collected from 127 out of 417 municipalities in Bahia. The molecular analyses of 695 triatomines revealed a ~10% T. cruzi infection rate, which was highest in the T. brasiliensis species complex. Most bugs were found to have fed on birds (74.2%), and other blood-meal sources included dogs (6%), cats (0.6%) and humans (1%). Trypanosoma cruzi-infected triatomines that fed on humans were detected inside houses. Spatial analysis showed a wide distribution of T. cruzi-infected triatomines throughout Bahia; triatomines that fed on dogs, humans, and cats were observed mainly in the northeast region.ConclusionsSynanthropic triatomines have a wide distribution and maintain the potential risk of T. cruzi transmission to humans and domestic animals in Bahia. Ten species were recorded inside houses, mainly Triatoma sordida, T. pseudomaculata, and the T. brasiliensis species complex. Molecular and spatial analysis are useful to reveal T. cruzi infection and blood-meal sources in synanthropic triatomines, identifying areas with ongoing threat for parasite transmission and improving entomological surveillance strategies.
ABSTRACT. This paper reports on the first occurrence of Psammolestes tertius in the Chapada Diamantina region, located in the city of Seabra, Bahia State, in northeastern Brazil. Following an active search, 24 P. tertius specimens were collected from Phacellodomus rufifrons (rufousfronted thornbird) nests. The insects did not present any symptoms of infection by Trypanosoma cruzi. P. tertius males were cytogenetically analyzed, and the results were compared with those of other specimens from the Brazilian State of Ceará. Triatomines from both locations presented the same cytogenetic characteristics: 22 chromosomes, little variation in the size of the autosomes, Y chromosomes that were larger than the X chromosomes, a chromocenter formed only by the sex chromosomes during prophase, and autosomes lacking constitutive heterochromatin. However, it is important to note that this species shows intraspecific chromosomal variation. In light of the results obtained, it is recommended that more studies be performed to characterize P. tertius. These studies will be particularly helpful in understanding this species in ecological, biological, biogeographical, and phylogenetic terms.
Background Triatomine bugs transmit Chagas disease across Latin America, where vector control-surveillance is increasingly decentralized. Locally run systems often deal with highly diverse native-vector faunas—plus, in some areas, domestic populations of non-native species. Flexible entomological-risk indicators that cover native and non-native vectors and can support local decision-making are therefore needed. Methods We present a local-scale entomological-risk score (“TriatoScore”) that leverages and builds upon information on the ecology-behavior and distribution-biogeography of individual triatomine bug species. We illustrate our approach by calculating TriatoScores for the 417 municipalities of Bahia state, Brazil. For this, we (i) listed all triatomine bug species recorded statewide; (ii) derived a “species relevance score” reflecting whether each species is native/non-native and, if native, whether/how often it invades/colonizes dwellings; (iii) mapped each species’ presence by municipality; (iv) for native vectors, weighted presence by the proportion of municipal territory within ecoregions occupied by each species; (v) multiplied “species relevance score” × “weighted presence” to get species-specific “weighted scores”; and (vi) summed “weighted scores” across species to get municipal TriatoScores. Using standardized TriatoScores, we then grouped municipalities into high/moderate/low entomological-risk strata. Results TriatoScores were higher in municipalities dominated by dry-to-semiarid ecoregions than in those dominated by savanna-grassland or, especially, moist-forest ecoregions. Bahia’s native triatomines can maintain high to moderate risk of vector-borne Chagas disease in 318 (76.3%) municipalities. Historical elimination of Triatoma infestans from 125 municipalities reduced TriatoScores by ~ 27% (range, 20–44%); eight municipalities reported T. infestans since Bahia was certified free of Trypanosoma cruzi transmission by this non-native species. Entomological-risk strata based on TriatoScores agreed well with Bahia’s official disease-risk strata, but TriatoScores suggest that the official classification likely underestimates risk in 42 municipalities. Of 152 municipalities failing to report triatomines in 2006–2019, two and 71 had TriatoScores corresponding to, respectively, high and moderate entomological risk. Conclusions TriatoScore can help control-surveillance managers to flexibly assess and stratify the entomological risk of Chagas disease at operationally relevant scales. Integrating eco-epidemiological, demographic, socioeconomic, or operational data (on, e.g., local-scale dwelling-infestation or vector-infection frequencies, land-use change and urbanization, housing conditions, poverty, or the functioning of control-surveillance systems) is also straightforward. TriatoScore may thus become a useful addition to the triatomine bug control-surveillance toolbox. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.