Effective and fast methods are important for distinguishing cocoa varieties in the field and in the processing industry. This work proposes the application of NIR spectroscopy as a potential analytical method to classify different varieties and predict the chemical composition of cocoa. Chemical composition and colour features were determined by traditional methods and then related with the spectral information by partial least-squares regression. Several mathematical pre-processing methods including first and second derivatives, standard normal variate and multiplicative scatter correction were applied to study the influence of spectral variations. The results of chemical composition analysis and colourimetric measurements show significant differences between varieties. NIR spectra of samples exhibited characteristic profiles for each variety and principal component analysis showed different varieties in according to spectral features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.