This paper presents a model called SAM-FG (stress approach model of functionally graded shells) for linear elastic, thin, and moderately thick shells made of functionally graded materials. The model is an extension of the SAM-H model, originally created for homogeneous shells. Assuming that the material is orthotropic and that one of its orthotropic directions is the thickness direction, the extension consists in considering that the 3D compliance tensor may depend on the thickness coordinate. The model starts with a tunable polynomial approximation of the 3D stress field that contains the same generalized forces as SAM-H. This stress approximation verifies the 3D equilibrium equations and the stress boundary conditions at the faces of the shell. As in SAM-H, 5 generalized displacements appear in SAM-FG. By applying the Hellinger–Reissner functional and Reissner’s variational method, the generalized forces, strains, and equations in SAM-FG turn out to be the same as in SAM-H, except for the generalized constitutive equations. To prove the accuracy of the model, SAM-FG is first applied to a simply supported, functionally graded plate and its results are compared to other models. To validate the model for shell-like structures, SAM-FG results are compared to those obtained with solid finite element calculations for three case studies of structures subjected to an internal pressure. The first one deals with a hollow sphere made of an isotropic functionally graded material. The second case considers a hollow cylinder made of an orthotropic functionally graded material. In the last case, a catenoid with an isotropic functionally graded material is studied. In all cases, the mean displacements are correctly predicted, even if the main purpose of the SAM-FG model is not to calculate these fields accurately. The stress field approximations are very accurate, and since the implementation of the shell model in a finite element code would imply 5 degrees of freedom per node, SAM-FG is a good alternative to solid finite element calculations for the structural analysis of functionally graded shells with a reasonable computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.